
CiA Draft Standard Proposal 302

CANopen
Framework for CANopen Managers and

Programmable CANopen Devices

This is a draft standard proposal and is not recommended for implementation.

Version 3.2.1

Date: 09.04.2003

„ CAN in Automation e. V.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- I -

History

Date Version Changes

05.03.1998 1.0 Initial revision

27.11.1998 2.0 • New chapter for NMT Master related objects

• Extension of Configuration Manager

• Groups / Multiplexor PDO: Clarification and new objects for
configuration

29.06.2000 3.0 • Introduced definition of the boot-up procedure

• Renamed chapter Slave Assignment to Network List

• New objects for the network list

• Clarification of existing objects according to DS-301 V4

• Moved chapter Configuration Master behind chapter NMT
Master

• New objects for the Configuration Manager

• Adaptation of Client/Server relationships to Pro-
ducer/Consumer model according to DS-301 V4. Removed
references to CAL.

• Network variables may have access type rww

• Removed duplicated example in section 8.4

• Moved data type declaration 23h to 25h due to overlap with
DS-301 V4

• Moved objects 1020H Verify Configuration, 1021h/1022h EDS
Storage to appendix of DS-301

• Moved chapter OS Command and Prompt to appendix of DS-
301

• Moved chapter Groups to appendix of DS-301

• Change of SDO Manager Mechanisms

07.03.2002 3.1 • Definition of CANopen Manager includes now the case NMT
Master + Configuration Manager

• Self-starting devices

• Flying Master taken over from SIG Maritime with some
changes

• Updated references

• Object 1F81h, Bit 1 has become obsolete by the defined
processes; removed

• Clarification of object attribute M/O

• Editorial changes

• Added Error Codes

08.05.2002 3.1.1 • Bug fixes and clarifications

05.06.2002 3.1.2 • Renamed

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- II -

13.03.2003 3.2 • Editorial changes

• Updated references

• Read/Write Network Variables Block as Domain

09.04.2003 3.2.1 • Editorial Change

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- III -

Table of Contents

1 Scope... 1

2 References... 1

3 CANopen Manager, Terms and Definitions.. 2

4 Boot-Up Procedure... 3

5 NMT Master .. 17

5.1 NMT Start-up... 17

5.2 Network List... 20

5.3 Error Control .. 22

5.4 Request NMT .. 25

5.5 Flying master... 27

6 Configuration Manager... 37

6.1 DCF storage.. 37

6.2 Concise configuration storage ... 38

6.3 Check configuration process... 39

6.4 Request configuration ... 40

6.5 EDS storage.. 40

7 Dynamic establishment of SDO connections.. 41

7.1 Basic mechanism... 41

7.2 Specification.. 43

8 Input/Output of a programmable device.. 51

8.1 Basics ... 51

8.2 Dynamic index assignment .. 51

8.3 Object dictionary entries .. 52

8.4 EDS .. 53

8.5 DCF... 55

9 Program Download .. 56

10 Summary of object dictionary extensions .. 59

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- IV -

Figures

Figure 1: CANopen boot-up procedure main flow, part 1..4

Figure 2: CANopen boot-up procedure main flow, part 2..5

Figure 3 : Start Boot Slave Process...6

Figure 4: Boot slave predefined process, part 1. ..8

Figure 5: Boot slave predefined process, part 2 (optional). ...10

Figure 6: Check node state -predefined process. ...11

Figure 7: Check and update software version -predefined process..................................12

Figure 8 :Boot slave predefined process, part 3...13

Figure 9: Check configuration -predefined process...14

Figure 10:Simplest possible NMT Boot Process ...17

Figure 11:Start Error Control Service -predefined process..23

Figure 12:Error Handler ...24

Figure 13: Flow on Reception of a Boot-up Event...25

Figure 14:Flying master process overview..28

Figure 15:Detection of Active NMT master protocol..29

Figure 16:NMT master negotiation protocol..30

Figure 17:Waiting period after reception of the trigger time slot command............................31

Figure 18:Forcing a new NMT master negotiation protocol...31

Figure 19:Detection of NMT Master Capable Devices...32

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 1 -

1 Scope

The CANopen Communication Profile (DS-301) defines the basic communication mechanisms
for exchanging data via a CANopen-based networks. This includes the structure of the object
dictionary, the network management and boot-up as well as communication objects like PDO,
SDO, SYNC and time stamp. The object dictionary provides a standard interface for accessing
of communication parameters as well as process data. The part of the object dictionary which
describes the general device and communication parameters is common for all devices types.

Application specific functionalities which are provided by certain device types are detailed in
specific device profiles (DS-4xx). A device profile is always based upon the definitions in the
communication profile.

In general the mechanisms which are specified in the communication profile are sufficient for
the definition of profiles for devices which, on the application level, provide some kind of I/O
functionality. Example devices include I/O modules, drives and regulators. These devices
whilst they may be complex are not termed ‘intelligent’ as they do not run an application level
program.

For the description and operation of intelligent devices further mechanisms are necessary
which are specified in DS-302. DS-302 has to be regarded as a framework for the definition of
device profiles for intelligent or programmable devices in form of an extension to the communi-
cation profile DS-301. The additional mechanisms specified in DS-302 are useful especially for
intelligent devices like PLCs, HMIs or CANopen tools.

DS-302 comprises the following mechanisms and definitions:

• The term CANopen Manager is introduced to specify more clearly the network functionality
of a network controlling device.

• Definition of the Boot-Up process and the related objects.

• A possibility for configuration of unconfigured nodes during system boot-up by means of a
Configuration Manager.

• The dynamic establishment of SDO connections between devices. Dynamic SDO connec-
tions are handled by the SDO Manager.

• The definition of dynamically allocated entries in an object dictionary which can be used for
the representation of I/O data e.g. on programmable nodes like PLCs.

• A general mechanism for downloading program data and functions for the control of pro-
grams on a device.

Some of these new mechanisms are also useful not only for intelligent or programmable de-
vices.

2 References

/1/ CiA DS 301, CANopen - Communication Profile for Industrial Systems, v 4.02, February
2002

/2/ CiA DSP-305, CANopen Layer Setting Services and Protocols (LSS), v1.0, May 2000

/3/ CiA DSP-306, Electronic Data Sheet Specification, v1.2, December 2002

/4/ CiA DSP-405, Device Profile for IEC1131 Programmable Devices, v2.0, December 2000

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 2 -

3 CANopen Manager, Terms and Definitions

Besides the application process several different additional functionalities can exist in a
CANopen system. These functionalities are referred to by different terms. This chapter is in-
tended to clarify these terms.

Within a distributed system the application process is divided into several parts running on dif-
ferent nodes. From the applications point of view usually one node is responsible for the con-
trol of the system. This node is called application master (e.g. a PLC).

From the network’s point of view there are several additional functionalities which not directly
deal with the application but provide application supporting functions. These additional func-
tionalities are based on a master / slave, client / server or producer / consumer relationship.

• NMT Master
The network management (NMT) provides services for controlling the network behaviour of
nodes as defined in /1/ DS-301. All nodes of a network referred to as NMT Slaves are con-
trolled by services provided by an NMT master and which have to be executed by an NMT
master application. Usually the NMT master application is also part of the application mas-
ter.

• SDO Manager
The SDO Manager is an optional functionality responsible for handling of the dynamic es-
tablishment of SDO connections as defined in chapter 7. If an SDO Manager is present in a
system it must reside together with the NMT Master on the same node.

• Configuration Manager
The Configuration Manager is an optional functionality which provides mechanisms for con-
figuration of nodes in a system during boot-up as defined in chapter 6. The mechanisms
are called Configuration Management CMT. The Configuration Manager must reside on the
same node together with the NMT Master and SDO Manager.

• SYNC Producer
The SYNC Producer is an optional functionality which is responsible for transmitting the
SYNC object. It may reside on any one node in a CANopen system.

• TIME Producer
The TIME Producer is an optional functionality which is responsible for transmitting the TIME
STAMP object. It may reside on any one node in a CANopen system.

• LSS Master
The layer specification services (LSS) provides services for configuring layer 2 (bit timing)
and NMT (Node-ID) via CAN as defined in /2/ DS-305. All nodes in a network which support
LSS services are LSS Slaves. The services are provided by the LSS Master and used by a
LSS Configuration Application.

 Because it is usual to combine several of the additional functionalities on one node an addi-
tional term is introduced: the CANopen Manager.

 A node is referred to as a CANopen Manager when the functionality of an NMT Master is pro-
vided by the node and at least one of the functionalities SDO Manager or Configuration Man-
ager.

 Basically all objects in this document are optional. If denoted as mandatory, this is valid if the
concerned functionality is provided by the device (e.g. SDO Manager). Some objects consist of
a set of bits, specifying several kinds of behaviour (as e.g. 1F80h). Only those bits have to be
implemented that correspond to a supported behaviour. If not implemented, the bit has to be
0.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 3 -

4 Boot-Up Procedure

When the CANopen Manager starts after Power-On, it will perform the state machine according
to DS-301. Before switching the state from Pre-Operational to Operational it has the task of
booting all assigned slaves. The overall process is shown in the following two flow charts. The
flow charts show the process with the most complete set of implemented features. Refer also
Figure 10.

Am I configured as
NMT Master?

Object
1F80h

Enter Slave Mode

LSS required ?
not
defined

##

Bit 0

yes

Yes

no

No

Send 'NMT Reset
Communication all
Nodes ' command

 Flying Master
Process

Normal operation

Object
1F80h

Bit 5

Execute LSS
Master

Keep alive-bit of
some of the nodes

set?

Object
1F81h

Bit 4

Send 'NMT Reset
Communication' to

the nodes with Keep
alive- bit not set

yes

Optional

A

Autostart ?

Object
1F80hBit 2

No

Enter operational

Yes

No

won

lost

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 4 -

Figure 1: CANopen boot-up procedure main flow, part 1.
Predefined process 'Execute LSS' is not given in this document.

The Boot-Up main flow consists of the following basic steps:

1. If the Flying Master process shall be executed, this finds out the active NMT Master. The
process itself is described in chapter 5.5. The process can directly lead to Slave Mode.

2. Bit 0 of the object 1F80h is checked to decide upon whether this node is assigned to be
the NMT Master or not. If not, the node will enter a slave mode if supported.

3. For systems that require setting of Node-IDs or baudrate CANopen defines the LSS. If
necessary, this has to be performed (perhaps even before step 1). The block in the flow
chart is only a place holder. It is not the scope of this document to specify the concrete en-
try point for LSS actions.

4. The Master starts with the service NMT Reset Communication All Nodes, except if any of
the nodes is forbidden to be reset without state check. In some applications some of the
slave nodes may enter a special mode (like manual mode) in case of CANopen manager
sudden drop-out. If the continuous state is the safe state, it may not be tolerable to send
NMT Reset Communication -command for such a node if the state of the node is initially
Operational. Bit 4 in the object 1F81h (see chapter 5.2) is provided to force a state check
prior to sending NMT Reset Communication -command. In case the Bit 4 of the object
1F81h in any of the sub-indexes is non-zero, NMT Reset Communication All Nodes must
not be sent, but the nodes are reset individually.

The Reset Communication shall not apply for the Master itself.

This step allows to put the slaves in a state, where the settings of all parameters are well-
defined. In the case, that the Master detected a booting slave later on, it uses the service
only for the individual node.

The main flow resumes in Figure 2 .

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 5 -

All mandatory
slaves booted?

Normal operation

'Enter Operational'
from application

received

Enter myself
Operational

Object
1F81h

Halt network boot-
up procedure

A

Start Slaves
with 'NMT Start all

Nodes'

Object
1F80h

Enter myself
automatically
Operational ?

Object
1F80h

No

Bit 0,3

Bit 2
yes

No

yes

No

Bit 1,3

yes

No

yes

Send 'NMT Start all
Nodes ' -command

Boot slave
Boot slave
Boot slaveStart Boot
Slave Process

Bit 2

Figure 2: CANopen boot-up procedure main flow, part 2.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 6 -

5. The main flow resumes with the Start Boot Slave Process as illustrated in Figure 3. This will
try to boot all optional slaves at least once and will boot all mandatory slaves.

6. If an error occurs on booting a mandatory slave the main flow forces a halt of the boot-up
procedure.

7. Start Remote Node

After all mandatory nodes are started, the Master will enter state Operational according to
NMT Start-up configuration bit 2 in object 1F80h (refer to chapter 5.1).

If the bit 3 of object 1F80h (see chapter 5.1) allows, perform the service NMT Start Remote
Node (= 'Enter Operational') – either individually after finishing the configuration or by
broadcast command after all nodes have been configured. Whether the NMT Start Remote
node should be sent individually or globally is configured in bit 1 of the object 1F81h (refer
to chapter 5.2).

The Start Boot Slave Process is given by Figure 3.

End Sub Process

No

Start Process
Boot Slave

Boot Slave
Wait

asynchronously 1s

Object
 1F81h

Bit 3

Yeserror status B ?

error status OK ?

is
Must bit set

and boot time
elapsed?

No

Inform applicationNo

Yes

Start Parallel Process
Boot Slave

End of Process
Start Boot Slave

Yes
signal

successfull boot
or elapsed time

Yes Object
 1F89h

Signal received ?

No

signal first
boot access

on optional slave

Figure 3 : Start Boot Slave Process

The steps of the Start Boot Slave Process are as follows:

1. Start parallel Process

2. Wait for a signal, that a boot was successful or at least was tried once

The parallel process will

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 7 -

1. Perform the process Boot Slave

2. Create Signal for a Boot Slave try

3. If Boot Slave returned with status OK finish the process. For optional slaves the process
runs endlessly until the slave is found. The recommended cycle time for baudrates above
125 kBit/sec is 1 second. This will stop only, if the slave is found or the application removes
the slave from the network list. The loop will stop also if the slave is mandatory and the
predefined timeout (object 1F89h) occurs. In that case the Boot slave -process ends with
an error status. The application and error specific error handler may then give a warning to
the operator and may resume with other nodes in a 'limb mode'. If none of the loop end
conditions above is satisfied, the slave poll loop will run endlessly. The check is done asyn-
chronously. That means, that other processes will run in parallel.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 8 -

The “Boot Slave” -process is given by the following three flow charts:

Response
received?

Boot slave

Request for slave
object 1000h (Device

Type)

Is the slave Node
ID still in network

list?

Slave identity
(Device Type) ok or

don't care?

Object
1F84h

Object
1F81h

End of Boot slave
with Error status A

NoBit 0

End of Boot slave
with Error status C

No

Yes

Yes

Do I have to check
Identification?

Objects
1F85h-
1F88h

Request for slave
object 1018h sub-

index 1, 2, ...

Response
 received and

Identification ok?

Objects
1F85h-
1F88h

B

Yes

End of Boot slave
with Error status

D, M, N or O

No

Yes

C

Yes

No

Route B is optional,
Route C is the normal
route

End of Boot slave
with Error status BNo

Figure 4: Boot slave predefined process, part 1.

The steps of the Boot slave -process are as follows:

1. Attempt to read slave’s index 1000h to check if the node is present.

If the slave does not answer the read request, the Boot slave -process ends with an error
status.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 9 -

2. Identification

If the Device Type Identification value for the slave in Network List object 1F84h (refer to
5.2) is not 0000h (“don’t care”) compare it to the actual value.

If the configured Vendor ID in Network List object 1F85h is not 0000h (“don’t care”), read
slave’s Index 1018h, Sub-Index 01h and compare it to the actual value. The same happens
with ProductCode, RevisionNumber and SerialNumber with the according objects 1F86h to
1F88h.

On identification failure, the process continues with error handler (whose reaction is appli-
cation specific).

The Boot slave -process continues with an optional part (Part 2, see Figure 5), which intro-
duces two optional boot-up features: keeping alive initially operational slave nodes and con-
trolling application software versions including automatic update of the slave software.

The Keep alive -feature is used in situations where a slave node is already in Operational state
when the CANopen manager starts up. This situation may happen for example in case of sud-
den drop-out and restart of the CANopen manager. In some cases it is not tolerable to reset
the slave node, because the slave node may have entered a special mode (e.g. manual op-
eration mode) in case it notices a drop-out of the CANopen manager. This type of mode is
needed if the continuous state of the sub-process controlled by the slave is the safe state. The
slave node notices the restart of the CANopen manager from the 'NMT Start Remote Node' -
indication and may resume its normal operation mode.

The software version control is used in situations where it is important to check the application
software version prior to starting of the remote node. The 'Check and update software version'
-predefined process includes also possibility to download the application software automatically
if the software version is not correct. In case of a checksum error during slave start-up self di-
agnostics, the slave may also respond deliberately with a wrong version information (like zero
date and zero time) to force the CANopen manager to download the application software.
Automatic download requires a file system to exist on the CANopen manager to store the ap-
plication software of the slave nodes that are configured to join the automatic software down-
load process.

Both or only one of the two features may be implemented optionally.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 10 -

B

Check and
update

software
version

Is the Keep
alive -bit for this

node set?
Object
1F81h

Check node
state

Was the node
already

Operational?

Send 'NMT Reset
Communication'
command for this

node

No

Is software
version check

necessary?

Software
 version now

correct ?

End of Boot slave
with Error status

G, H or I
C

Object
1F81h Bit 5

No

Node state
received?

End of Boot slave
with Error status

E or F
Yes

No

Bit 4 Yes

Yes

No

Yes

t <
 node lifetim

e

No

D

Yes

Figure 5: Boot slave predefined process, part 2 (optional).

3. Keeping alive initially operational slaves

If the Keep alive -bit (bit 4 of object 1F81h, see chapter 5.2) is set the state of the slave
has to be checked to verify whether the slave is in Operational state or not. If the node
state was not received the process is resumed by the application and error specific error
handler. In case the state information is received and is noticed to be 'Operational', the
process resumes from connection point D in Figure 8. In practice this means that software
version checking and configuration version checking steps are skipped. If the state was not

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 11 -

'Operational', the NMT Master sends 'NMT Reset Communication' -command to this node.
Note that in case the slave supports Node Guarding protocol, the Check node -process
sends a single RTR to request the Node Guard response. Hence, the slave is unintention-
ally fooled to start its local Error Control process. Therefore, it is recommended to keep the
time between sending of the RTR and sending the 'NMT Reset Communication' -command
less than Node Life Time in order to prevent the slave from generating a Life Guarding
Event. However, in most cases it may cause no harm if the Life Guarding Event neverthe-
less occurs, as the 'NMT Reset Communication' -indication occurs subsequently anyway. In
case the slave is already Operational and the next RTR is delayed more than Node Life
Time, succeeding Life Guarding Event will not cause problems, because the slave had al-
ready got the Life Guarding Event due to CANopen manager drop-out. The slave must not
resume its normal operation as a consequence of receiving RTR but only after receiving
NMT Start Remote Node -command.

Check node state -predefined process is illustrated in Figure 6

Object
1016h

Check node state

End of Check node
state with Error

status E

Consumer
Heartbeat Time

non-zero?

Send RTR to request
for the Node Guard

response

Heartbeat
indication
received?

Node guard
confirmation
received?

End of Check node
state with Error

status F

Consumer
Heartbeat Time

elapsed?

100 ms
elapsed from

sending RTR?

End of Check node
state with actual

node state

Yes

Yes

Yes

YesYes

No

No

No

No

No

Figure 6: Check node state -predefined process.
(needed only if the optional part of the Boot slave -process is implemented).

4. Application software version control

Setting Bit 5 of the object 1F81h (see chapter 5.2) forces application software version verifi-
cation. The software version is checked and if automatic software update is allowed for the
node, the software is downloaded in case of version inconsistency. In case of errors during
version checking or software download, the process is resumed by the error handler.

Check and update software version -predefined process is illustrated in Figure 7.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 12 -

Check and
update software

version

Request for slave
object 1F52h

(ApplicationSW
Date and Time)

Expected
ApplicationSWDate
and -Time existing

and non-zero?

Object
1F53h

Yes

Object
1F54h

Response
 received and Application

SW Date and
Time ok?

End of Check and
update software

version with Error
status G

End of Check and
update software

version with OK status

Object
1F53h

Object
1F54h

Download
program code

End of Check and
update software

version with Error
status H

Program
download successfully

done?

End of Check and
update software

version with Error
status I

No

No

Is automatic
software update

for this node
allowed?

Object
1F81h

No

Yes

No

Yes

Yes

Bit 6

Figure 7: Check and update software version -predefined process
(needed only if the optional part of the Boot slave -process is implemented).
Download program code – pre-defined process is not illustrated in this con-
text. For objects 1F52h to 1F54h refer to chapter 9; for bit 6 of object 1F81h

refer to chapter 5.2.

The Boot slave -process continues with part 3 (see Figure 8). This part is mandatory.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 13 -

Yes

Do I have to
start slave nodes

individually ?

Object
 1F80h

Bit 1

Send 'NMT Start
Remote Node'

command for this
slave

No

Is my state
OPERATIONAL Yes

End of Boot Slave
with OK Status

No

C

Check
configuration

Check
configuration OK ?

Yes

Start
Error Control

Service
D

End of Boot Slave
with Error status JNo

Start Error Control
Service OK ?

End of Boot Slave
with Error status KNo

Yes

End of Boot Slave
with L status

if flow started from point D

Am I allowed to
start the nodes ? Yes

No
Bit 3

Figure 8 : Boot slave predefined process, part 3

5. Check configuration

The Configuration Management (CMT) is described in detail in chapter 6. It will check the
configured value of the Network List object 1F26h and 1F27h. If both values are not 0, it will
read the slave’s object 1020h Verify Configuration. If the read access fails or the actual val-

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 14 -

ues are not equal to the configured values or the objects 1F26h, 1F27h are not imple-
mented, the CMT will start the CMT Download process.

If the CMT Download process fails, the boot-up process continues with the error handler
(whose reaction is application specific).

The process flow may skip the Check configuration –step in case Keep alive -feature is im-
plemented and the slave is noticed to be initially Operational. In that case, the flow re-
sumes from connection point D. If the flow resumes from connection point D the situation is
informed to the application by returning from the Boot slave -process with an error code.
The error code is used by the error handler to give a warning 'Slave X was initially Opera-
tional' to the operator.

Check configuration – pre-defined process is illustrated in Figure 9.

Check
configuration

Request for slave
object 1020h (Verify

Configuration)

Expected
ConfigurationDate
and -Time existing

and non-zero?

Object
1F26h

Yes

Object
1F27h

Download
configuration

Response
 received and

Configuration Date and
Time ok?

Download
successful?

End of Check
configuration with

Error status J

End of Check
configuration with

OK status

DCF of
the

slave

No

No

No

Object
1F26h

Object
1F27h

Yes

Yes

Figure 9: Check configuration -predefined process.
Download configuration -predefined process is not illustrated in this context.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 15 -

6. Start Error Control Service

The procedure shall support DS-301 V3 devices as well as V4 devices. For this the Master
inspects it’s configured values in object Consumer Heartbeat Time 1016h and Slave As-
signment 1F81h and proceeds as described in chapter 5.2. If the Start Error Control Service
-process fails, the boot-up continues with error handler (whose reaction is to restart the
Boot Slave Process and further application specific behaviour).

Start Error Control Service -predefined process is illustrated in Figure 11 in chapter 5.3.

7. Starting individual slaves

If the bit 3 of object 1F80h (see chapter 5.1) allows and if the bit 1 of object 1F80h is con-
figured zero (0), the slave has to be started individually.

In Normal Operation, after the end of the initial boot-up procedure, the NMT master will not
perform anymore the "NMT Start all node" command that may be required according object
1F80h Bit 1. In that case the Boot Slave process has to start individually the node if the
NMT master is allowed to start a node. The test whether then NMT master's node is
OPERATIONAL allows to know if the initial boot-up procedure has reached its end or not.
This case happens when the process is started by the Error Handler (see chapter 5.3) or
by the Boot-Up handler (see chapter 5.4) for an optional node with a late boot-up or a new
device replacing a defunct one.

Descriptions of the Error status codes showing up in the boot-up procedure flow charts:

Error status Description

A The slave no longer exists in the Network list

B No response on access to Actual Device Type (object 1000h) received

C Actual Device Type (object 1000h) of the slave node did not match with the
expected DeviceTypeIdentification in object 1F84h

D Actual Vendor ID (object 1018h) of the slave node did not match with the
expected Vendor ID in object 1F85h

E Slave node did not respond with its state during Check node state -process.
Slave is a heartbeat producer

F Slave node did not respond with its state during Check node state -process.
Slave is a Node Guard slave (NMT slave)

G It was requested to verify the application software version, but the expected
version date and time values were not configured in objects 1F53h and 1F54h

respectively

H Actual application software version Date or Time (object 1F52h) did not match
with the expected date and time values in objects 1F53h and 1F54h respec-
tively. Automatic software update was not allowed

I Actual application software version Date or Time (object 1027h) did not match
with the expected date and time values in objects 1F53h and 1F54h respec-
tively and automatic software update failed

J Automatic configuration download failed

K The slave node did not send its heartbeat message during Start Error Control
Service although it was reported to be a heartbeat producer (Note! This error
situation is illustrated in Figure 11 in chapter 5.3)

L Slave was initially operational. (CANopen manager may resume operation
with other nodes)

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 16 -

Error status Description

with other nodes)

M Actual ProductCode (object 1018h) of the slave node did not match with the
expected Product Code in object 1F86h

N Actual RevisionNumber (object 1018h) of the slave node did not match with
the expected RevisionNumber in object 1F87h

O Actual SerialNumber (object 1018h) of the slave node did not match with the
expected SerialNumber in object 1F88h

Application notes:

In principle parameters are just written and not read afterwards; the correct implementation of
the SDO protocol must be trusted. This may be changed for safety critical parameters or appli-
cations.

It is allowed to boot one device after another or all in parallel.

The defined process gives an overview on the Boot-Up, it shall not define specific API for NMT
or other concrete instances. The main purpose is to have some common rules for Master Code
and to give Slave Devices the knowledge, what they have to expect on Boot-Up.

The same process will be used, if a slave has to be booted while the rest of the system is al-
ready running, e.g. after a Reset or Error Control Event. In that case the NMT Start Node may
always be sent individually.

Since nearly all objects and features in this document are optional it is possible to implement
very basic NMT Master, which could make sense for some kinds of applications. The most sim-
ple boot-up process possible besides self-starting devices is shown in Figure 10.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 17 -

Send 'NMT Reset
Communication all
Nodes ' -command

Power On

Send 'NMT Enter
Operational all Nodes ' -

command

Wait
(time not specified in

this document)

Normal Operation

Figure 10: Simplest possible NMT Boot Process

5 NMT Master

The NMT Master provides services for controlling the network behaviour of nodes as defined in
DS-301. Only one NMT Master can exist in a CANopen Network. Since there may be several
devices that are able to perform the task of an NMT Master, it is necessary to configure this
functionality.

5.1 NMT Start-up

Index Object Name Type Attr. M/O

1F80h VAR NMTStartup UNSIGNED32 rw O

This object configures the start-up behaviour of a device that is able to perform the NMT. The
value has the following interpretation:

Bit 0

= 0 Device is NOT the NMT Master. The objects of the Network List
have to be ignored. All other bits have to be ignored. Exceptions
for Autostart 0001 000b, 0000010b (see below).

= 1 Device is the NMT Master.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 18 -

Bit 1

= 0 Start only explicitly assigned slaves (if Bit 3 = 0).

= 1 After boot-up perform the service NMT Start Remote Node All
Nodes (if Bit 3 = 0)

Bit 2

= 0 Enter myself automatically Operational

= 1 Do not enter myself Operational automatically. Application will
decide, when to enter the state Operational.

Bit 3

= 0 Allow to start up the slaves (i.e. to send NMT Start Remote Node -
command)

= 1 Do not allow to send NMT Start Remote Node -command; the
application may start the Slaves

Bit 4

= 0 On Error Control Event of a mandatory slave treat the slave indi-
vidually.

= 1 On Error Control Event of a mandatory slave perform NMT Reset
all Nodes (including self). Refer to Bit 6 and 1F81h, Bit 3

Bit 5

= 0 Do not participate Flying Manager Process

= 1 Participate the Flying Manager Process

Bit 6

= 0 On Error Control Event of a mandatory slave treat the slave ac-
cording to Bit 4

= 1 On Error Control Event of a mandatory slave send NMT Stop all
Nodes (including self). Ignore Bit 4.

Bit 7-31 reserved (0000 0000 0000 0000 0000 0000 0)

Bits that control a feature that is not supported by the implementation are ro.

Object 1F80h is a configuration object. Internal state transitions must not change this object.

The system integrator has the responsibility to combine the bits appropriately. The following
combinations for configuration have a standardised behaviour:

- NMT Master, Flying Master not supported

 Bit 0 1 2 3 4 5 6

 Value 1 X X X X 0 X

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 19 -

 This is the standard case for CANopen Managers without performing a Flying Master Proc-
ess. The device performs the Boot-Up as a described with evaluating all the other bits.

- NMT Master supporting Flying Master Process

 Bit 0 1 2 3 4 5 6

 Value 1 X X X X 1 X

 The Bit 0 stays 1 even if the device looses the Flying Master Process. In that case Bit 2
Autostart feature is not evaluated. The device has to store the information that it currently
is not the NMT Master internally. If the device gets the Mastership it continues the Boot-Up
as a described with evaluating all the other bits.

- Start-up capable Device, Autostart feature only

 Bit 0 1 2 3 4 5 6

 Value 0 0 0 1 0 0 0

 Devices that are not implementing an NMT Master, but shall enter Operational mode auto-
matically, shall implement object 1F80h. This feature can be configured with setting Bit 2 to
0 whilst Bit 0,1 are set to 0. Bit 3 is 1 due to the not implemented NMT. Bit 4 is ignored.

- Start-up capable Device, NMT Start command implemented

 Bit 0 1 2 3 4 5 6

 Value 0 1 0 0 0 0 0

 Devices that are not implementing a complete NMT Master, but shall enter Operational
mode automatically and shall transmit the 'NMT Start all Nodes' command, shall implement
object 1F80h. This feature can be configured with setting Bit 2 to 0 whilst Bit 0,3 are set to
0 and Bit 1 to 1. Bit 4 is ignored.

- Start-up capable Device, Autostart feature, supporting Flying Master Process

 Bit 0 1 2 3 4 5 6

 Value 0 0 0 1 0 1 0

 Like with Start-up capable Device with Autostart. Additionally supports Flying Master Proc-
ess.

- Start-up capable Device, NMT Start command implemented, supporting Flying Master
Process

 Bit 0 1 2 3 4 5 6

 Value 0 1 0 0 0 1 0

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 20 -

 Like with Start-up capable Device with NMT Start command implemented. Additionally sup-
ports Flying Master Process.

Index Object Name Type Attr. M/O

1F89h VAR BootTime UNSIGNED32 rw O

This object describes the maximum time in ms, the master will wait for all mandatory slaves be-
fore signalling an error. If the time is zero (0), it will wait endlessly. The Default Value is 0.

5.2 Network List

The objects defined in this chapter are only valid and allowed to perform NMT actions, if object
1F80h configures this device as NMT Master.

The Network List consists of some objects, that give information which slaves have to be man-
aged, how they have to be booted and about requested actions on Error Control events.

Index Object Name Type Attr. M/O

1F81h ARRAY SlaveAssignment UNSIGNED32 rw O

This object assigns slaves to the NMT Master. It gives information about Error Control Parame-
ters and about actions to be performed on Error Control Events. All other parameters according
to a slave in the Network List are only valid, if the slave is assigned to the SlaveAssignment
1F81h.

Sub-Index 00h has the value 127d.

Each sub-index in the array corresponds to the slave with the Node ID equal to the sub-index.
The sub-index equal the Master’s Node-ID is ignored.

Byte 0

Bit 0 = 0 Node with this ID is not a slave

= 1 Node with this ID is a slave. After configuration (with
Configuration Manager) the Node will be set to state
Operational.

Bit 1 reserved for compatibility

Bit 2 = 0 On Error Control Event or other detection of a booting
slave inform the application but do NOT automatically
configure and start the slave.

= 1 On Error Control Event or other detection of a booting
slave inform the application and do start the process
“Start Boot Slave”.

Bit 3 = 0 Optional Slave: Network may be started even if this
node could not be contacted.

= 1 Mandatory slave: Network must not be started if this
slave node could not be contacted during the boot
slave procedure.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 21 -

Bit 4 = 0 The slave node may be reset with NMT Reset Communi-
cation -command independent of its state. Hence, no
checking of its state has to be executed prior to NMT
Reset Communication -command.

= 1 NMT Master must not send NMT Reset Communication
for this node if it notices the slave to be in Operational
state. This is noticed by waiting for the heartbeat mes-
sage or sending RTR for the node guard message.

Bit 5 = 0 Application software version verification for this node is
not required

= 1 Application software version verification for this node is
required

Bit 6 = 0 Automatic application software update (download) is not
allowed

= 1 Automatic application software update (download) is
allowed

Bit 7 reserved (0b)

Byte 1 8 Bit Value for the RetryFactor

Byte 2,3 16 Bit Value for the GuardTime

Bits that control a feature that is not supported by the implementation are ro.

If the answer on a Guard RTR is missing the NMT Master will retry the request (RetryFactor-1)
times each with an interval of GuardTime. Guarding will be performed only if non-zero values
are entered for RetryFactor and GuardTime. For more details concerning Error Control see
chapter 5.3.

Index Object Name Type Attr. M/O

1F84h ARRAY DeviceTypeIdentification UNSIGNED32 rw O

This object allows to enter values for expected device types. Sub-Index 00h has the value
127d. Each Sub-Index in the array corresponds to the slave with the Node ID equal to the Sub-
Index. The Sub-Index equal to the Master’s Node-ID is ignored. On Boot-Up the Master reads
object 1000h of each assigned slave. If the value in DeviceTypeIdentification is 0, this read
access only gives information about the principle existence of a device with this Node-ID. If the
value is not 0, it is compared against the value read from the device and the boot-up for that
device is only continued on exact equality. For multi-device-modules the application may per-
form additional checks.

Index Object Name Type Attr. M/O

1F85h ARRAY VendorIdentification UNSIGNED32 rw O

This object allows to enter values for expected Vendor IDs. Sub-Index 00h has the value 127d.
Each Sub-Index in the array corresponds to the slave with the Node ID equal to the Sub-
Index. The Sub-Index equal to the Master’s Node-ID is ignored. If a value in this array is not 0,
on boot-up procedure the Master will read object 1018h, Sub-Index 01h of the device and com-

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 22 -

pare it to the actual value. The Boot-Up for that device is only continued on exact equality. The
application may perform additional checks – e.g. for serial numbers.

Index Object Name Type Attr. M/O

1F86h ARRAY ProductCode UNSIGNED32 rw O

1F86h ProductCode: List of expected ProductCode (Object 1018h Sub-Index 02h) for each ex-
pected slave device. Sub-Index 00h has the value 127d. Each sub-index in the array corre-
spond to the slave with the Node-ID equal to the sub-index. If a value in this array is not 0, on
Boot-Up procedure the Master will read object 1018h, Sub-Index 02h of the device and com-
pare it to the actual value, and the Boot-Up for that device is only continued on exact equality.

Index Object Name Type Attr. M/O

1F87h ARRAY RevisionNumber UNSIGNED32 rw O

1F87h RevisionNumber: List of expected RevisionNumber (Object 1018h Sub-Index 03h) for
each expected slave device. Sub-Index 00h has the value 127d. Each sub-index in the array
correspond to the slave with the Node-ID equal to the sub-index. If a value in this array is not
0, on Boot-Up procedure the Master will read object 1018h, Sub-Index 03h of the device and
compare it to the actual value. As revision number include major and minor revision, the Boot-
Up for that device is only continued on "exact mach" on the major revision and "greater than"
on minor revision number.

Index Object Name Type Attr. M/O

1F88h ARRAY SerialNumber UNSIGNED32 rw O

1F88h SerialNumber: List of expected SerialNumber (Object 1018h Sub-Index 04h) for each
expected slave device. Sub-Index 00h has the value 127d. Each sub-index in the array corre-
spond to the slave with the Node-ID equal to the sub-index. If a value in this array is not 0, on
Boot-Up procedure the Master will read object 1018h, Sub-Index 04h of the device and com-
pare it to the actual value, and the Boot-Up for that device is only continued on exact equality

5.3 Error Control

The NMT Master has to be able to manage DS-301 V3 devices as well as V4 devices. In par-
ticular this requires a mechanism to decide, if Guarding or Heartbeat has to be used for Error
Control. A further requirement is the compatibility of the objects 1F80h to 1F83h from DS-302
V2.0.

The mechanism cannot rely only on DS-301 V4 specified Heartbeat Consumer behaviour,
since this defines Heartbeat Consuming in a way, that it is only monitored, when the Heartbeat
Producer really started the Heartbeat. For an NMT Master ’s point of view it is highly desirable
to detect, if a Heartbeat Producer does not start within a certain amount of time. For this rea-
son for the NMT Master it is specified that

Heartbeat Consuming Time-Out checking immediately starts with the process
‘Start Error Control Service’. The first time-out equals the value of Heartbeat
Consumer Time in object 1016h.

Start Error Control Service -predefined process is illustrated in Figure 11.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 23 -

Start Error Control
Service

End of Start Error
Control Service with

Error status K

End of Start Error
Control Service with

OK status

Object
1F81h

Is the slave Node
ID still in network

list?

 Is GuardTime
zero?

Consumer
Heartbeat time

non-zero?

Start Node Guarding
Protocol with first

RTR

Bytes 2,3

Bit 0

Consumer
Heartbeat Time

elapsed?

Heartbeat
indication
received?

Object
1016h

Yes Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 11: Start Error Control Service -predefined process.

If the Error Control creates an Error Event (refer to /1/), the Start Boot Slave Process will be
restarted and further application specific behaviour may be activated. This is illustrated in
Figure 12. The flow on reception of a Boot-up Event is shown in Figure 13.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 24 -

Error Event

Start Boot
Slave Process

Object
1F81h

bit 0

End of Error Handler

Inform application

Slave still in
Network List?

yes

no

Send NMT Reset
Node Command

Stop all nodes?

Send NMT Stop all
Nodes Command

yes

Object
1F80h

bit 6

Reset all nodes?

Send NMT Reset all
Nodes Command

yes

no no

bit 4bit 3 bit 3

Figure 12: Error Handler

Note: The command “Stop all nodes” will be send if 1F80h-Bit 6 is 1 and 1F81h-Bit 3 is 1. If not so, the command “Reset all nodes”
will be send if 1F80h-Bit 4 is 1 and 1F81h-Bit 3 is 1.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 25 -

BootUp Event

„Start Boot
Slave Process“ for this

Node

Object
1F81h

bit 0

End of BootUp
Handler

Inform application

Slave still in
Network List?

yes

no

„Start Boot Slave
Process“ allowed?

bit 2

yes

no

Figure 13: Flow on Reception of a Boot-up Event

5.4 Request NMT

Only the NMT Master is allowed to perform NMT services on the Network. Other devices (such
as a configuration tool) are not allowed to perform NMT service for two reasons:

• CAN forbids the transmission of the same CAN identifier (except RTR) for more than one
device.

• If another device than the NMT Master changes the state of an NMT Slave and the NMT
Master guards that Slave, the NMT Master will recognize a Guard Error.

The problem is solved, if the device that wants to change the state of another device requests
this action at the NMT Master. A further advantage of this mechanism is, that e.g. an
IEC61131 application can request NMT actions by writing to its local object dictionary.

Index Object Name Type Attr. M/O

1F82h ARRAY RequestNMT Unsigned8 Sub 00h: ro
Sub 01h to 7Fh: rw
Sub 80h: wo

O

Sub-Index 00 NrOfSupportedObjects has the ro value 128d.

Sub-Index 1h to 7Fh: Request NMT Service for the Slave with Node ID.

Sub-Index 80h: Request NMT Service for all Nodes.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 26 -

On write access to this object the value is the requested node state. On read access this ob-
ject reports the actual node state.

State Value on
write access

Value on
read access

Stopped 04h 04h

Operational 05h 05h

ResetNode 06h -

ResetCommunication 07h -

PreOperational 7Fh 7Fh

not known - 00h

node missing - 01h

These commands can also be applied to the Master itself. A RequestNMT to all nodes will also
apply for the Master itself.

Application hint: Network Tools need the possibility of performing NMT services at least for net-
works where no CANopen Manager exists. It is even useful for development purposes to have
this feature available in networks with a Configuration Manager. To allow this, the user of such
a Tool should have the possibility to configure, if the Tool performs direct NMT or via Request
NMT.

Index Object Name Type Attr. M/O

1F83h ARRAY RequestGuarding Unsigned8 Sub 00h: ro
Sub 01h to 7Fh: rw
Sub 80h: wo

O

Sub-Index 00h NrOfSupportedObjects has the ro value 128d.

Sub-Index 01h to 7Fh: Request Guarding for the Slave with Node ID.

Value Write Access Read Access

1 Start Guarding Slave actually is guarded

0 Stop Guarding Slave actually is not guarded

Sub-Index 80h: Request Start/Stop Guarding for all Nodes.

For activation of Heartbeat Protocol, there is no special object required. One side has to be
configured as Heartbeat Producer, the other as Heartbeat Consumer. To obtain the informa-
tion, if the Master actually performs the Heartbeat Monitoring, the object 1F82h may be read.
Any other value than 0 shows a running Heartbeat.

These objects are only allowed to perform NMT actions, if object 1F80h configures this device
as NMT Master.

Application hints:

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 27 -

Object 1F81h defines reaction of the NMT Master on Guard Errors. If this is configured not to
perform automatically recovery, the application uses objects 1F83h, 1F25h (see Configuration
Manager) and 1F82h to “manually” re-boot the slave.

The objects defined in this chapter are volatile. They are not stored by Save Command 1010h.

When the NMT State of a Slave is changed via 1F82h, no automatic re-boot shall appear. Oth-
erwise a system administrator never had the chance to get the slave into a stable Pre-
Operational state.

5.5 Flying master

There are several functions within a CANopen network that have to be performed by only one
supervising instance. Functions of this type are:

• NMT master (system startup)
• SDO manager (optional)
• Configuration manager (optional) (system configuration)

When the function of the NMT Master is of vital necessity for a system, it shall be guaranteed
that after a failure of the actual NMT Master another NMT Master automatically takes over the
function of the failed NMT Master.

In the following the terms NMT Master and CANopen Manager can be exchanged, since the
described process itself does not depend on the SDO Manager and Configuration Manager.
Anyhow, once an NMT Master is determined, the possibly existing SDO Manager on this device
is getting the active SDO Manager and the possibly existing Configuration Manager is getting
the active Configuration Manager. Changing SDO/Configuration Managers imply the question
of their concrete behaviour. This is well-defined without further specifications, since in any case
on a NMT Master change all devices are performing a reset and the SDO/Configuration Man-
agers get active only if the NMT Master residing on the same device is getting active.

The process of NMT Master Determination is called Flying Master Process. In Figure 14 the
basic principle of the Flying Master Process is shown. This process is to be performed by any
NMT Master -capable device, having Bit 0 and Bit 5 of 1F80h set. This process is embedded in
the general boot-up process as described in chapter 4.

First the device checks, if there is already an NMT Master active by means of the ”Detection of
active NMT Master protocol” (Section 5.5.1.1). If no NMT Master is already active in the system
an NMT Master negotiation process is performed, which normally ends with sending the master
identification of the newly initialised device. If in the system already an NMT Master is active
and the priority of the active NMT Master is less than the new device, then a new NMT Master
negotiation is forced (Section 5.5.2). If the priority of the new device is less than the already
active NMT Master, only the slave application is started.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 28 -

Priority of active
Master > own

Priority?

Power-On
(Cold Boot)

Master active?

Yes

No Coming from
Cold Boot?

Yes

No

Send 'NMT Reset
Communication all
Nodes ' command

Warm Boot

Master
Negotiation

Detection of highest-
prior Master

Master
identification from

other node
received?

Send Master
Identification

No

Start Master
Application

Yes

Start Slave
Application

Yes

Force new
Master

Negotiation

No

Warm Boot

Initialisation +
Wait Negotiation

Time Delay

Detection of
active NMT Master

Figure 14: Flying master process overview

5.5.1 Protocols for NMT master-capable devices

5.5.1.1 Detection of active NMT master protocol

With this protocol (Figure 15) an NMT master-capable device can request the active NMT mas-
ter for its ” NMT Master Priority Level”. There are three priority levels defined, where 0 is the
highest priority level and 2 is the lowest.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 29 -

The reply from the active NMT master must be provided within a configurable period of time.
This time value is specified in object 1F90h/01 of the flying master timing parameters.

Reserved Identifiers

Request of NMT master priority level: ID = 73h (no data)

Reply from the active NMT master: ID = 71h

Data Byte [0] ... NMT master priority level

Data Byte [1] ... Node ID

73h

data[0]71h data[1]

ID master
request

Priority
level

Master
identifier

Node-ID

Master and
Start-up capable

devices

The only active
NMT master

Figure 15: Detection of Active NMT master protocol

5.5.1.2 Preparation of master negotiation

The protocol "NMT Master Negotiation" (Chapter 5.5.1.3, Figure 16) is used for starting an NMT
master determination process when no active NMT master is in the network. This also takes
place, when a lower-prior master has been kicked by a "Force new Master Negotiation".

If the boot-up came from power-on (cold boot) and no master is active, it has to be ensured
that PDO traffic does not disturb the timing, which is described below. Furthermore it has to be
ensured, that instances of SDO manager and other network services have to be reset properly.
Therefore all NMT master-capable devices have to perform an "NMT Reset Communication"
command. This will force them all again to fall back to Initialisation, but with "Warm Boot".

The "NMT Reset Communication" has to reset also the transmitters internal state machine and
object dictionary.

For compensation of different initialisation times the devices wait the NMT master negotiation
time delay (1F90h/02h).

5.5.1.3 NMT master negotiation protocol

NMT master-capable devices transmit the ”ID trigger timeslot” command for starting and syn-
chronising their timers. When a device receives the ”ID trigger timeslot” command there is no
need to transmit also the ”ID trigger timeslot” to prevent high busload. If the device receives
again an "ID trigger timeslot" the timers have to be restarted.

Each device has a unique waiting period based on its Node-ID and priority group. The device
with the lowest waiting period will transmit the Master identification first (Figure 17).

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 30 -

The waiting period is determined according to the following rule:

�

Waitingtime after trigger = Priority level ⋅ Priority time slot() + Node - ID ⋅ Node time slot()

with ”Priority time slot” and ”Node time slot” being configurable basic time intervals. For the pri-
ority time slot the following rules must be considered:

�

Priority time slot >127 ⋅ Node time slot

The priority level values are according to Table 5-1: Priority level values

Priority level Description

0 High

1 Medium

2 Lowest

Table 5-1: Priority level values

The timing parameter of the NMT Master negotiation protocol are specified in the object dic-
tionary under the following indices:

Priority level Object 1F90h/03h

Priority time slot Object 1F90h/04h

Node time slot Object 1F90h/05h

Reserved Identifiers

Time Slot Trigger command: ID = 72h (no data)

Reply from a Master-capable device: ID = 71hh:

 Data Byte [0] NMT Master priority level

Data Byte [1] Node ID

72h

data[0]71h data[1]

ID trigger
timeslot

Priority
level

Master
identifier

Node-ID

NMT Master
capable device

NMT Master
capable device

Master
identification

Start local timers

Figure 16: NMT master negotiation protocol

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 31 -

Wating_time

Wating_time

Wating_time

[0..127]

[0..127]

[0..127]

NMT Master
determination-
trigger timeslot

received

NMT Master
identification for
module with
high priority

NMT Master
identification for
module with
medium priority

NMT Master
identification for
module with
lowest priority

Figure 17: Waiting period after reception of the trigger time slot command

5.5.2 Forcing a new NMT master negotiation protocol

This protocol is used for starting a new NMT master determination process when

• During the master determination process (Section 5.5.1.1) an active NMT Master of lower
priority is detected or

• multiple active NMT masters are detected (Section 5.5.4.2)

To force a new NMT master negotiation the ”Force NMT Reset Communication Command” is
transmitted by the device which requests the new NMT Master negotiation.

Reserved Identifiers

Request of Force NMT Reset Communication Command

: ID = 76h (no data)

76h

Force NMT reset
communication command

NMT Master
capable device

Active NMT Master

Figure 18: Forcing a new NMT master negotiation protocol

This forces the active Master to transmit the NMT Reset Communication All Nodes Command. It
has to apply this reset also to his own state machine and own object dictionary. Afterwards it
will follow again the standard entry into the procedure as warm boot-up.

Implementation hint: To avoid a deadlock of the system, an NMT master should not force a
further NMT master negotiation when it lost the first negotiation and a node of lower priority
again got the mastership (this could be caused by wrong configured timing parameters.

5.5.3 Protocol for startup-capable devices

Startup-capable devices are devices that are able to start without an NMT master. They only
can enter Operational Mode automatically and optionally set a group of nodes to operational

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 32 -

by sending an NMT Start all nodes command. If this feature is configurable the device has to
implement the appropriate bits of object 1F80h.

5.5.3.1 Detection of NMT master-capable devices protocol

With this protocol a startup-capable device can check after ”Power On” if there is at least one
NMT master -capable device in the network.

Before starting the protocol the device must wait a configurable time delay (object 1F91h/02h of
startup timing parameters) after initialization. With a reserved identifier data frame with no data
the device asks for NMT master -capable devices. Any device with NMT master capability will
reply with a reserved identifier frame and zero data field. (Figure 19).

If one or more devices answer within a configurable period of time (object 1F91h/01h of timing
parameters), the requesting device knows that there exist at least one device with the capabil-
ity to become NMT master.

If there is no response from any device, the requesting device will send the NMT command
”Start Network”. To avoid several start commands when a group of startup-capable nodes of
the same type is switched on, the devices have a node-ID-based waiting period which is cal-
culated by:

�

Waitingtime = Node - ID ⋅ Node time slot

 (with Node time slot value at 1F91h/03h) If this feature is supported, it must be guaranteed that
multiple start network commands are ignored by already started nodes.

Reserved Identifiers

Request of NMT master -capable devices: ID = 75h (no data)

Reply from an NMT master -capable device: ID = 74h (no data)

75h

74h

ID Request NMT
Master capable device

ID reply NMT Master
capable device

Startup capable
device

NMT Master
capable device

All NMT Master
capable devices

Figure 19: Detection of NMT Master Capable Devices

5.5.4 Detection of failures

In a CANopen network only one active NMT master is allowed. Due to failure conditions prob-
lems can occur which shall be resolved automatically by the following measures:

• When the active NMT master fails, a backup NMT master must detect the loss of the active
NMT Master and correct the situation.

• When two or more NMT master become active at the same time this must be detected by
the NMT masters and corrected. This situation can for example happen when the CAN-line
was temporarily split, causing two NMT masters becoming active.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 33 -

5.5.4.1 Detection of an NMT master failure

To detect the loss of the active NMT master, every NMT master -capable device needs to moni-
tor the heartbeat of the active NMT master. Therefore the node Id of the active NMT Master is
captured during the ”Detection of Active NMT Master Protocol”.

To solve the problem, the master negotiation must be initiated. This shall be done by sending
an "NMT Reset Communication" command to all devices.

Remark: It is not possible to use the the ”Force New NMT Master Negotiation Protocol”, since
there is no master that could perform the Reset command.

Implementation remark: When an NMT master supports the ”Heartbeat Consumer” entry
(1016h), all NMT master capable devices must be configured by a configuration tool in this en-
try. When an NMT master doesn’t support this entry, the NMT master must automatically con-
figure the internal receive object for reception of the heartbeat message of the active NMT
master.

5.5.4.2 Detection of multiple NMT masters

Active NMT masters transmit cyclically the ”Forcing New NMT Master Negotiation Protocol” -
without the sender forcing itself to send "NMT Reset Communication". The cycle time period
can be configured in object 1F90h/06h of the flying master timing parameters.

If multiple NMT masters exist, they will be forced into a reset by this mechanism. The very rarely
case that both (or more) send the message at the same time will have the effect that they do
not see it as received. In order to resolve this situation the cycle time periods of all NMT Master
shall be configured with different values.

5.5.4.3 System design

The mechanism to use messages of same COB-ID without data works only if there are devices
that do not send these messages. Therefore it is not allowed to build a system that consists
only of Flying Master capable devices.

A network performing the Flying Master Process must not use state-critical nodes and vice-
versa.

5.5.4.4 Physical line disturbances

If there are error frames on the bus, they may shift the time slots. In the worst case there can
be overlaps of the messages, which will lead to a total bus shutdown. The implementation is
responsible to detect this situation and implement appropriate fallbacks.

5.5.5 Disabling of the flying master

When an NMT master -capable device shall be used as normal node in a network with an NMT
master which do not support the flying master procedure, the flying master-mechanism must be
disabled. This is possible by clearing object 1F80h.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 34 -

5.5.6 Object dictionary entries

Object 1F90h: Flying master timing parameters

OBJECT DESCRIPTION

Index 1F90h

Name Flying master timing parameters

Object code ARRAY

Data type UNSIGNED16

Category Conditional;

Mandatory, if flying master mechanism is supported

ENTRY DESCRIPTION

Sub-index 00h

Description Number of entries

Entry category Mandatory

Access ro

PDO mapping No

Value range 06h

Default Value 06h

Sub-index 01h

Description Timeout for detection of an active NMT master

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED16

Default value 100d (ms)

Sub-index 02h

Description NMT master negotiation time delay

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED16

Default value 500d (ms)

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 35 -

Sub-index 03h

Description Master priority level

Entry category Mandatory

Access rw

PDO mapping No

Value range 00h to 02h

Default value No

Sub-index 04h

Description Priority time slot

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED16

Default value 1500d (ms)

Sub-index 05h

Description Node time slot

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED16

Default value 10d (ms)

Sub-index 06h

Description Multiple Master Detect Cycle Time

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED16

Default value 4000d + Node-ID * 10d (ms)

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 36 -

Object 1F91h Startup-capable device timing parameters

OBJECT DESCRIPTION

Index 1F91h

Name Startup-capable device timing parameters

Object code ARRAY

Data Type UNSIGNED16

Category Conditional;

Mandatory, for startup-capable devices

ENTRY DESCRIPTION

Sub-index 00h

Description Number of entries

Entry category Mandatory

Access ro

PDO mapping No

Value range 03h

Default Value 03h

Sub-index 01h

Description Timeout for detection of an NMT master -capable
device

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED16

Default value 100d (ms)

Sub-index 02h

Description Delay time for an NMT master-capable device request

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED16

Default value 500d (ms)

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 37 -

Sub-index 03h

Description Node time slot

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED16

Default value 15d (ms)

Application note: The timing values are calculated for a system running at 125 kBit/s. For other
baudrates the devices have to be configured with appropriate time values.

6 Configuration Manager

The Configuration Manager has the task of configuring all network devices at the network boot-
up. For this it has to know all the (application dependent) parameter values. This information is
set-up in the Device Configuration File DCF of each device.

Most often the set-up of the DCF will be done on a computer station (PC or Workstation). Af-
terwards the DCF has to be transferred to the Configuration Manager. If this is located on the
same Computer, the file(s) may be transferred locally by passing the file name(s). If the Con-
figuration Manager is on another device in the network, the transfer has to be done via
CANopen.

In practice we find two different systems. On the one side we have systems with some kind of
disk access. They are able to download/upload a DCF file as is. On the other side we have
systems without disks and only low memory resources. They require the DCF information in a
very compressed form. For meeting those requirements both methods are defined. If the Con-
figuration Manager does not have disk based storage but does have sufficient non-volatile
memory, it is recommended to perform the file transfer option at least on a logical level.

The Configuration Manager is active only if the NMT Master residing on the same device is
active. Refer to chapters 5.1 and 5.5. If it is not active, the object dictionary entries can be
configured, but after a reset it shall not use them for configuring the slaves.

6.1 DCF storage

Index Object Name Type Attr. M/O

1F20h ARRAY Store DCF DOMAIN rw O

1F21h ARRAY Storage format UNSIGNED8 rw O

Index 1F20h, sub-index 00h describes the number of entries. This is equal to the maximum pos-
sible Node-ID (127d). Each sub-index points to the Node-ID of the device, for which the DCF
belongs.

Uploading the DCF of a device from a Configuration Tool to the Configuration Manager is done
by writing the DCF file as a domain to the object 1F20h with the sub-index equal to the devices
Node-ID.

Downloading the DCF of a device from the Configuration Manager to a Tool is done by reading
the object 1F20h with the sub-index equal to the devices Node-ID.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 38 -

The filename does not need to be stored since every DCF contains its own filename.

Object 1F21h describes the format of the storage. This allows the usage of compressed for-
mats.

Value Format

00h ASCII, not compressed

01h to FFh reserved

The device may always store the file compressed internally. The object describes the external
behaviour.

If no data had been stored, an SDO Read Request to 1F20h or 1F21h is aborted with the error
code 0800 0024h "Data set empty"

6.2 Concise configuration storage

The concise device configuration does not contain every information of the DCF. It is recom-
mended to use this if the complete DCF storage is not possible.

The information to be stored consists of the parameter values of the object dictionary entries.

Index Object Name Type Attr. M/O

1F22h ARRAY Concise DCF DOMAIN rw O

Sub-index 00h describes the number of entries. This is equal to the maximum possible Node-ID
(127d). Each sub-index points to the Node-ID of the device, to which the configuration belongs.

The content is a stream with the following structure:

Number of supported entries UNSIGNED32

Index 1 UNSIGNED16

Sub-index 1 UNSIGNED8

Data size of parameter 1 UNSIGNED32

Data of parameter 1 DOMAIN

Index 2 UNSIGNED16

Sub-index 2 UNSIGNED8

Data size of parameter 2 UNSIGNED32

Data of parameter 2 DOMAIN

:::::::

Index n UNSIGNED16

Sub-index n UNSIGNED8

Data size of parameter n UNSIGNED32

Data of parameter n DOMAIN

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 39 -

The Data Size is counting bytes (i.e. Unsigned16 has size 2; size of Boolean is given as 1).

Uploading the configuration of a device from a Configuration Tool to the Configuration Man-
ager is done by writing the stream to the object 1F22h with the sub-index equal to the devices
Node-ID.

Downloading the configuration of a device from the Configuration Manager to a Tool is done
by reading the object 1F22h with the sub-index equal to the devices Node-ID.

Application hint:

The generation of the concise data stream has to consider the rules according to DS-301.
Especially the generation of PDO parameters requires an appropriate ordering of the objects:

1. Delete the PDO by setting bit 31 to 1 (if it is not readonly)
2. Configure Sub-Indexes 2 upwards of the Communication Parameters (may be step 4)
3. Deactivate mapping by setting NrOfMappedObjects to 0
4. Configure the mapping entries
5. Create the PDO by writing a valid COB-ID with the bit 31 reset to 0.

Application hint:

1. An empty data set can be written by the following concise stream:

Number of supported entries 0 (UNSIGNED32)

2. If no data has been stored, an SDO Read Request will return a valid concise
stream with the following content:

Number of supported entries 0 (UNSIGNED32)

6.3 Check configuration process

DS-301 defines the object 1020h Verify Configuration. If a device supports the saving of pa-
rameters in non volatile memory, a network configuration tool or a CANopen manager can use
this object to verify the configuration after a devices reset and to check if a reconfiguration is
necessary. The configuration tool has to store the date and time in that object and has to store
the same values in the DCF. Now the configuration tool lets the device save its configuration
by writing to index 1010h Sub-Index 1 the signature "save". After a reset the device restores
the last configuration and the signature automatically or by request. If any other command
changes boot-up configuration values, the device has to reset the object Verify Configuration
to 0.

The Configuration Manager compares signature and configuration with the value from the DCF
and decides if a reconfiguration is necessary or not. The comparison values are stored on the
Configuration Manager in the objects

Index Object Name Type Attr. M/O

1F26h ARRAY Expected configuration date UNSIGNED32 rw O

1F27h ARRAY Expected configuration time UNSIGNED32 rw O

Sub-Index 00h NrOfSupportedObjects has the ro value 127d.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 40 -

Sub-Index i (with i=1..127, i != Node-ID of Configuration Manager): Stores the Configuration
date/time of the slave that has Node-ID i.

The usage of Check Configuration is described in chapter 4, specially in Figure 9.

Application hint: The usage of this object allows a significant speed-up of the boot-up proc-
ess. If it is used, the system integrator has to consider the that a user may change a configura-
tion value and afterwards activate the command store configuration 1010h without changing
the value of 1020h. So the system integrator has to ensure a 100% consequent usage of this
feature. It should be a feature of configuration tools to force or at least encourage a correct
usage of object 1020h.

6.4 Request configuration

In applications there might be situations, where it is necessary to configure the slaves while
run-time. An example is, that a slave has fallen down and re-boots. The NMT master will recog-
nize this and will inform the application (see chapter 4, 5). With the object Configure Slave the
application is able to tell the Configuration Manager, that it shall configure that slave.

Another example is the connection of a new machine part with several devices. The application
needs a possibility to start the Configuration Manager at least for the new nodes.

Index Object Name Type Attr. M/O

1F25h ARRAY Configure slave Unsigned32 Sub 00h: ro
Sub 01h to 80h: wo

O

Sub-Index 00h NrOfSupportedObjects has the ro value 128d.

Sub-Index i (with i=1..127): Request re-configuration for the Slave with Node ID i.

Sub-Index 80h: Request re-configuration for all Nodes.

To avoid accidental access, the signature ‘conf’ (this equals the UNSIGNED32 number
666E 6F63h) has to be written to initiate the process.

If no data had been stored, an SDO Write Request to 01h to 7Fh is aborted with the error code
0800 0024h "Data set empty". An SDO Write Request to sub-index 80h returns without error
even if there is no data stored.

Application hint: The latter allows to implement simple applications to request the CMT without
knowing the actual project configuration. If the application wants to configure the network with
more control it can use a loop over all known slaves.

6.5 EDS storage

For some devices it may be possible to store the EDS. This has some advantages:

• The manufacturer does not have the problem of distributing the EDS via disks

• Management of different EDS versions for different software versions is less error prone, if
they are stored together

• The complete network settings may be stored in the network. This makes the task of ana-
lysing or reconfiguring a network easier for Tools and more transparent for the users.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 41 -

For those devices which are not able to store their EDS, the Configuration Manager may take
over this task. For this the following objects are defined in the Configuration Manager:

Index Object Name Type Attr. M/O

1F23h ARRAY Store slave EDS DOMAIN rw O

1F24h ARRAY Slave EDS storage format UNSIGNED8 rw O

Index 1F23h, sub-index 00h describes the number of entries. This is equal to the maximum pos-
sible Node-ID (127d). Each sub-index points to the Node-ID of the device, for which the EDS
belongs.

Uploading the EDS of a device from a Configuration Tool to the Configuration Manager is done
by writing the EDS file as a domain to the object 1F23h with the sub-index equal to the devices
Node-ID.

Downloading the EDS of a device from the Configuration Manager to a Tool is done by reading
the object 1F23h with the sub-index equal to the devices Node-ID. If no data had been stored,
this is aborted with the error code 0800 0024h "Data set empty"

The filename does not need to be stored since every EDS contains its own filename.

Object 1F24h have the same description and behaviour as object Storage Format in the DCF
storage (object 1F21h).

7 Dynamic establishment of SDO connections

CANopen offers a communication mechanism between devices via Service Data Objects.
These communication channels are always established between two nodes. For accessing a
device the first time at least one SDO per device is required. This is the default SDO. Only the
SDO-Manager has the right to access that SDO.

Each CANopen device may support additional SDOs. By default they are disabled. Refer to
DS-301 sections "SDO parameter" and "Detailed Specification of Communication Profile spe-
cific Objects" 1200h to 12FFh.

For most of the application and most of the device types the mechanism of using SDOs is as
simple as with PDOs; any pair of devices may be pre-configured to have an SDO connection.

This chapter describes the method whereby nodes that are plugged in and out while the sys-
tem is running can establish dynamic SDO connections. This concerns for example configura-
tion tools, analysis tools or even HMIs with very intelligent configuration set-up. In general
every CANopen device can use this mechanism to establish dynamic SDO connections to
other devices. In the following every such device is referred to as "SDO Requesting Device"
SRD. This is done to make a clear distinction of this dynamic mechanism from the more static
method of pre-configured SDO connections.

The SDO Manager is active only if the NMT Master residing on the same device is active.

7.1 Basic mechanism

The SDO Manager M manages all SDO connections in the network. It can dynamically estab-
lish new connection between a SRD and a slave S. For this the device SRD first has to be-
come registered. This is done with the service "Dynamic SDO Request".

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 42 -

M

SSRD

Dynamic SDO Request

In the next step the SDO Manager scans for the requesting device and establishes a connec-
tion with SRD as client and M as server. For establishing the connection on the SRD, the SDO
Manager uses the object index of the Client SDO object dictionary entry which the SRD trans-
mits within the object entry Dynamic SDO Request State:

M

SSRD

Scan and establishment
of SDO SRD-M

Hereafter the device SRD can perform requests to the Manager via the new SDO. It will use
this to request a connection to device S (or some more devices). Together with the request,
the SRD transmits the object index of an own free Client SDO object dictionary entry which the
SRD wants to use for the SDO communication with device S.

M

SSRD

Request for
connection to S

The SDO Manager checks its internal table to determine whether the default SDO of S is free.
If this is occupied it will check the object dictionary of S for free additional SDOs (objects 1200h

et sqq.). It then establishes the connection by writing into the object dictionary entries of the
free Client SDO table entry on the SRD and 1200h et sqq. of S. If it decides to use the default

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 43 -

SDO of S, it does not need to write to the object dictionary of S, in that case it will update only
its internal table.

M

SSRD

Inspection and set-up
of SDO table

Inspection and set-up
of SDO table 1200h et
sqq.

The result is a SDO connection with SRD as client and S as server. With this SRD can access
S as requested.

M

SSRD

Established SDO connection

7.2 Specification

7.2.1 SRD registration

Registration process

The SDO Manager manages a table with all SRDs, that have access to SDOs. Those SRDs
have the state registered.

To become registered, an SRD sends the "Dynamic SDO Request". This is a data frame with-
out data bytes.

The COB-ID is 1760d.

After receiving such a request, the SDO Manager scans the network for SRDs. It stops the
scan at the first unregistered SRD it finds.

Scanning is carried out using SDO access to the object dictionary of the SRD. As all nodes are
attached to the Manager by default, the Manager uses the default SDO. The Manager knows
all default SDOs which are already allocated to other nodes.

For the scanning the Manager reads the object 1F10h "Dynamic SDO Connection State" of all
possible Node-IDs which are not yet registered as SRD. If this object states an open request,

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 44 -

the Manager uses the value OD Index from the object 1F10h and enables this entry in the “Cli-
ent SDO parameter” table. Afterwards the object 1F10h is reset by the Manager.

The described registration process results in a SDO connection from the SRD (Client) to the
SDO-Manager (Server).

Error Control of SRD

Any registered SRD has to participate in Error Control. After entering the list of registered SRDs
the SDO Manager will start the Node Guarding Protocol or Heartbeat Protocol. This implies that
the SDO Manager is placed in the same device instance as the NMT Master.

On a Error Control Error Event caused by the SRD, the Manager forces all SDOs requested by
that SRD to be released by writing into the corresponding SDO tables of the SRD and all by
the SRD accessed devices.

De-registration

If a SRD wants to de-register it has to indicate that by writing to the SDO Manager’s object
dictionary (Object 1F01h, Slave-Node-ID = 0).

If all the SDO connections of an SRD are released, it may stop performing the Error Control
Services.

7.2.2 Requesting/Releasing SDO Connections by SRD

Requesting Dynamic SDO Connections

In order to establish a new dynamic SDO connection to a device S, a registered SRD requests
the new connection by writing on object index 1F00h at the SDO Manager. The request data
consists of the node-ID of the SRD, the node-ID of the device S and an object dictionary index
of a free Client SDO object entry on the SRD which the SRD wants to use for the communica-
tion with device S. After setting up the dynamic SDO connection between the SRD and device
S the SDO Manager informs the SRD by writing on object index 1F10h on the SRD. The SDO
Manager also informs the SRD by writing to object 1F10h if it was not possible to establish the
connection. An error code informs the SRD about the reason for the failure.

Requesting Access to all default SDOs

A SRD can also request access to all default SDOs in a system. This is done during the regis-
tration process. The SRD indicates the request in object index 1F10h. If the SDO Manager
grants the access to all default SDOs to the SRD, the SDO Manager confirms this by writing to
object index 1F10h on the SRD. There is no explicit SDO connection established between SRD
and SDO Manager as in the normal registration process.

Releasing Access to all default SDOs

A SRD can release an granted access to all default SDOs only by stopping performing the
Error Control Services. As a consequence the SRD will also be de-registered.

Releasing Dynamic SDO Connections

In order to release a dynamic SDO connection to a device S the SRD transmits a release re-
quest by writing to object index 1F01h on the SDO Manager. The request data consists of the
node-ID of the SRD, the node-ID of the device S and the object dictionary of the Client SDO of
the SRD which the SRD wants to be released. If the SRD specifies the index number 0 then all
established dynamic SDO connections to the specified device are requested to be released.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 45 -

Error Control of Slave Devices

An optional feature of the SDO Manager is that in the registration process a SRD can request
the SDO Manager to start also the Node Guarding Protocol or Heartbeat Protocol for the slave
devices to which the SRD has established connections if there are no error control services
active for the devices. The SRD requests this feature by setting a bit in the object Dynamic
SDO Connection State (1F10h). If the SDO Manager supports this feature this bit remains set
otherwise the SDO Manager resets this bit when confirming the establishment of the SDO con-
nection from SRD to SDO Manager.

On a Error Control Error Event caused by the slave S, first the Manager reports the fail of slave
S by writing to object 1F11h. Then the Client SDO entry which was assigned to the slave S is
cleared on the SRD.

7.2.3 Object Dictionary Extensions

Mandatory Manager facilities

The following entries are used by SRDs to request and release SDOs:

Index Object Name Type Attr. M/O

1F00h VAR Request SDO (c->s) Unsigned32 wo M

1F01h VAR Release SDO (c->s) Unsigned32 wo M

Any registered SRD may write to one of those objects to request or release an SDO.

At object 1F00h the written object value indicates the node to which the SRD wants to have
access to the SRD’s Node-ID and the index to a free Client SDO entry, where the channel
should be established.

31 16 15 8 7 0

Index SRD Node-ID Slave Node-ID

MSB LSB

If the Manager refuses the request this will be done by the Service "Abort domain transfer" with
abort code 060A 0023h ("Resource not available: SDO connection"). The requested Node-ID
must not be 0.

On object 1F01h the value is coded as 32 Bit value:

31 16 15 8 7 0

Index SRD Node-ID Slave Node-ID

MSB LSB

Bits 0-7 indicate the Node-ID from which the SRD wants to be released. If the SRD wants to
realease the SDO connections to all nodes and also to de-register, the value must be set to 0.
This field is mandatory.

Bits 8-15 indicate the Node-ID of the SRD.

Bits 16-31 indicate the index into the object dictionary of the SRD, where the SDO connection
is stored. If this value is 0, all SDO connections to the slave are released. If the value points to
a valid SDO connection, this connection is released.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 46 -

The act of writing to the objects above only initiates the action on the Manager. A successful
response means, that the Manager starts the Establishment/Release. It does not mean that
the complete action has been successfully completed. The SRD has to observe the result at its
own object dictionary entries (establishment in 1F10h respectively release in the range 1280h to
12FFh). The time-outs used have to take into account that the Manager has to do several SDO
accesses to the indicated node and the SRD.

SRD objects

Any Node which wants to establish SDO connections dynamically, has to support the following
objects:

Index Object Name Type Attr. M/O

1F10h VAR Dynamic SDO connection
state

UNSIGNED32 rw M

This object is used for the SRD registration process as well as for the confirmation of an estab-
lished SDO connection to a device S which the SRD has requested by the SDO Manager be-
fore.

When this object is read and the SRD did not send a “Dynamic SDO Request” or is already
registered by the Manager, the value has to be 0.

If the SRD sends a "Dynamic SDO Request", it has to set the value of this object to
xxxx 0001h, whereas xxxx is the value of OD index (if the SRD requests active error control
services for the devices S it has to set the value to xxxx 0009h). If the SRD wants to have ac-
cess to all default SDOs, it sets the value 0000 0003h.

After the SRD is registered and a connection from the SRD to the Manger is established, the
Manager confirms the registration by writing to this object. Also errors during the registration
process are reported from the Manager to the SRD using this object.

When the SRD has requested a dynamic SDO connection to a device S, the Manager confirms
the successful or non-successful establishment of the requested SDO connection to the SRD
using this object.

31 16 15 8 7 0

Index Error code see below

MSB LSB

7 4 3 2 1 0

reserved (0h)
Req.
EC

Cnxn state Rq indi-
cation

MSB LSB

Rq Indication:

When the SRD wants to be registered, this bit has to be set.

This bit has to be reset to 0 by the Manager. This indicates the successful recognition
and registration of the SRD by the Manager.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 47 -

Cnxn State:

If the Manager is not able to establish an SDO connection from SRD to Manager or
from SRD to device S, it will set this field to 0. The reason is written into the field error
code.

If the Manager supports the dynamic establishment of SDOs and has established an
SDO connection from the SRD to the Manager by entering the new SDO in the SRDs
SDO table, it will set this field to 1.

If the SRD requested the ownership of all default SDOs (1F10h = 0000 0003h) and all
default SDOs in the system are unused (which will be true in many systems after com-
pletion of the boot-up), the Manager may set this field to 2. This assigns the ownership
of all default SDOs to the SRD. In this case the Manager does not have to set-up any
SDOs on the slaves and on the SRD. This has the advantage of establishing the
SDOs relatively quickly.

 If the Manager has established a requested SDO connection to device S, it sets this
field to 3.

Req EC

This bit must be set if the SRD requests the SDO Manager to start also the Node
Guarding Protocol or Heartbeat Protocol for the devices S to which the SRD has estab-
lished connections if there are no error control services active for the devices S.

If the SDO Manager supports this optional feature it will set this bit if it was set before in
the SRD registration request. If the SDO Manager does not support this feature it will
reset this bit.

reserved Always 0.

Error code

If the field Cnxn State has been set to 0, the field Error code gives the reason for the
error:

Error code Description

00h No precise details for the reason of the error

01h No SDO channel free for connection from SRD to SDO manager

02h No more free SDO channels available in the network

03h No more free server SDO entries on slave S

04h Slave S not available

05h to FFh reserved

Index:

SRD reports a free client SDO entry to the manager, where the registration channel
should be established on the SRD. When the manager writes to this object, it contains
the index of the client SDO object entry, where the channel was established. This
value is not used if access to all default SDOs is requested.

Index Object Name Type Attr. M/O

1F11h VAR Slave failed UNSIGNED16 wo O

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 48 -

15 8 7 0

Reason Slave Node-ID

MSB LSB

This object dictionary entry is used to inform the SRD that the slave S caused a Error Control
Error Event. The dynamic SDO connection is not longer valid. The Manager starts automatically
to release the dynamic SDO connection. This object is optional on the SRD and is only sup-
ported if the Manager supports bit 3 in object 1F10h (Dynamic SDO Connection State).

Reason Description

00h Slave S failed to respond on Node Guard/Heartbeat Protocol

01h to FFh reserved

Configuration of SDO manager

For establishing dynamic SDO connection the SDO Manager requires information about the
COB-IDs that are free in the system. This can be configured in the following table:

Index Object Name Type Attr. M/O

1F02h ARRAY SDO manager COB-IDs UNSIGNED32 rw M

The fields have the following structure:

Unsigned32

MSB LSB

bits 31 30 29 28-11 10-0

11-bit-ID 0/1 0/1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

11-bit Identifier

29-bit-ID 0/1 0/1 1 29-bit Identifier

bit number value meaning

31 (MSB) 0 COB-ID valid

1 COB-ID not valid

30 0 COB-ID free for usage

1 COB-ID is actually in use

29 0 11-bit ID (CAN 2.0A)

1 29-bit ID (CAN 2.0B)

28 - 11 0 if bit 29=0

X if bit 29=1: bits 28-11 of 29-bit-COB-ID

10-0 (LSB) X bits 10-0 of COB-ID

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 49 -

The COB-ID valid/not-valid bit signs if this entry is configured. The SDO Manager will set the bit
"COB-ID free for usage/is actually in use" to 1, if it allocates that COB-ID from the list and reset
it to 0, if the corresponding SDO connection is released.

If a Configuration Tool writes to these entries, it has to ensure, that there are no open dynamic
SDO connections.

All actually running SDO connections are stored in the following table:

Index Object Name Type Attr. M/O

1F03H ARRAY SDO connections part 1 UNSIGNED32 ro M

1F04H ARRAY SDO connections part 2 UNSIGNED32 ro O

1F05H ARRAY SDO connections part 3 UNSIGNED32 ro O

1F06H ARRAY SDO connections part 4 UNSIGNED32 ro O

This table allows the description of up to 254 connections with every SDO Manager. Optionally
it can be extended for up to 1016 connections.

The fields have the following structure:

31 24 23 16 15 8 7 0

Client offset Client Node-ID Server offset Slave Node-ID

MSB LSB

Server ID is the Node ID of the SDO connection server. Server offset is the offset into the
servers SDO table that begins with 1200h. Client ID is the Node ID of the SDO connection cli-
ent. Client offset is the offset into the clients SDO table that begins with 1280h. If one of the
fields Server ID or Client ID is 0, the connection is not valid, the entry is actually free.

The SDO Connections table is ro. If a tool wants to force connections to be released, it may do
this with object 1F01h "Release SDO".

Device Configuration File

Configuration tools have to know, which device in the network is the CANopen Manager. For
the purpose of designating this manufacturer independent, this information is written into the
DCF files of the project. The section DeviceComissioning of each device contains the boo-
lean entry CANopenManager. If the entry is missing, the described device is not the CANopen
Manager.

7.2.4 Implementation guideline

1. If the SDO Manager does not answer the "Dynamic SDO Request", the SRD should in-
form the user. In this case it’s the user’s responsibility to decide whether he wants to
switch the Manager off and continue the action. Then the SRD may use the default SDO
to access other nodes.

2. The SRDs should get the highest possible Node-ID in the system. This enables the
Manager to start the scan at the highest address 127d. Normally then it will find the SRD
- without unnecessary accesses to slave nodes - in the shortest possible time.

3. The SDO Manager is allowed to serve the SRD's requests in the manner of a relay sta-
tion. Amongst others this allows the advantage of connecting a device which has only
the default SDO to several other devices.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 50 -

4. If the SDO Manager assigned all default SDOs to the SRD (Object 1F10h field Cnxn
state set to 2), it has to assume that the SDOs remain in the SRDs ownership until the
SRD stops Guarding

5. For configuring the SDO Manager, the Configuration Tool has to request an SDO con-
nection to it. At least at the very first configuration the COB-ID list of the the SDO Man-
ager does not contain any valid entries. For establishing the SDO connection to the
Configuration Tool, the SDO Manager uses the pre-defined connection set (default
SDO).

7.2.5 Dynamic SDO establishment algorithm summary

1 The SDO Manager manages all SDOs in the system.
2 The SDO Manager and all SRDs have a Node-ID and an object dictionary.
3 If the SRD is not yet registered:
3.1 SRD requests SDO via "Dynamic SDO Request".
3.2 SDO Manager scans with SDO access.
3.3 Manager establishes SDO from SRD (client) to Manager (server), if not all de-

fault SDOs requested
3.4 SDO Manager confirms registration of SRD to SRD
3.5 SDO Manager enters the SRD in its guarding/heartbeat list.
4 If the Master did not already assign all default SDOs to the SRD (in 3.3):
4.1 SRD asks the SDO Manager for an SDO connection to device S.
4.2 SDO Manager enables SDO on the device S and attaches it to the SRD.
4.3 SDO Manager confirms SRD the established connection to device S
4.4 Optional: SDO Manager requests NMT Master to start error control services for

device S (if not already started) and enters device S in its guarding/heartbeat
list.

5 Releasing the SDO connection:
5.1 On Node-Guard/Heartbeat -Error the SDO connection is forced to be released.
5.2 SRD releases SDO if no longer needed.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 51 -

8 Input/Output of a programmable device

8.1 Basics

In a network programmable nodes can be characterised as a process having input variables
and output variables. The set of variables will be arguments of the program and hence will be
only known in a final state when the program has been written. The arguments must be han-
dled as variables located in the object dictionary.

The marking of such parameters depends on the programming system (e.g. IEC61131-3) and
can not be standardised here. But it can be assumed that there is a set of network variables
with the logic attribute EXTERN.

Compiling/Linking (or interpreting) a program including EXTERN variables requires relocation
information. Within CANopen devices this information is the index (and sub-index) of the vari-
able. Most of the programming systems know the mechanism of a resource definition. This can
be used to assign the CANopen attributes (index, sub-index, rw, Assignment of CANopen data
type to local data type etc.) to the corresponding symbolic names (variable name in the pro-
gram). The resource definition may be created with a simple editor by the user or with much
more comfort by a configuration tool. On systems with a disk-based file system a direct ex-
change via the DCF format is possible.

The names of variables have to meet the rules of the underlying programming system.
CANopen makes no restrictions for this. So this is the responsibility of the program-
mer/manufacturer.

Defining EXTERN variables requires a rule for distributing the indices. It is called "dynamic in-
dex assignment".

8.2 Dynamic index assignment

The index area used for dynamic index assignment is dependent on the device. Each data
type and direction (Input/Output) has its own area, called segment. These segments must not
overlap. Variables of same type are gathered in one array. If all elements of an array are de-
fined (sub-index 01h to FEh), the next free object of the area is allocated.

In order to allow programmable devices the use of a process picture, they may implement a
conversion formula which calculates the offset of a variable in the process picture in direct de-
pendence from the index and sub-index.

Definition of the abstract object segment:

A segment is a range of indexes in the object dictionary with the following attributes:

Data type This is the data type of the objects which can be defined in this segment.

Direction This flag distinguishes between inputs and outputs. The values are ‘wo’
for outputs and ‘ro’ for inputs. The distinction is important to know
whether the variable can be mapped into a receive PDO (wo) or transmit
PDO (ro). This does not concern the access possibilities via SDO.

Index range Range of indices with start index and end index.

PPOffset Offset in the process picture, where the first object of this segment is allo-
cated.

For byte and multi-byte variables this is a 32 bit unsigned offset value.

For Boolean variables it is the offset and additionally the address differ-
ence between two Boolean variables counted in bits. If Boolean vari-

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 52 -

ables are packed in bytes one bit after the other, the value is 1, if Boo-
leans are each stored in a byte cell, the value is 8 (see the EDS example
below).

Maximum count The maximum number of variables in this segment.

Many devices distinguish strictly between different segments in the process picture for different
data types. For those devices the PPOffset of the first segment will be 0, the PPOffset of the
second segment will be the maximum count of the first segment multiplied by the data type size
of the first segment and so forth. If this does not exactly meet the physical configuration, the
device software is free to implement this on a logical point of view by using internal segment
descriptors/offsets.

Other devices mix different data types in the same segment. For those devices all PPOffset
attributes will have the value 0. Configuration Tools which allocate space in that process pic-
ture by assigning indexes have to take into account, that in this case indexes have to be left
out to avoid overlapping. (For special applications it may be a feature to explicitly overlap vari-
ables. This helps interpreting memory cells as different types in debuggers.)

Any mixed form of those two device types is possible.

8.3 Object dictionary entries

Accessing the network variables is done via the entries described by the segments. In some
applications it is desirable to read or write the complete process picture as one block:

Object 1F70h: Process picture

OBJECT DESCRIPTION

Index 1F90h

Name Process picture

Object code RECORD

Category Optional

ENTRY DESCRIPTION

Sub-index 00h

Description Number of entries

Entry category Mandatory

Access ro

PDO mapping No

Value range 02h

Default Value 02h

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 53 -

Sub-index 01h

Description Selected range

Entry category Mandatory

Access rw

PDO mapping No

Value range UNSIGNED32

Default value 0000 0000h

Sub-index 02h

Description Process picture domain

Entry category Mandatory

Access rw

PDO mapping No

Value range DOMAIN

Default value No

After writing the selected range in sub-index 01h the corresponding data can be read from or
written to the addressed area with sub-index 02h as an unstructured stream of bytes.

The structure of selected range is as follows:

31 16 15 0

Data length Object segment

MSB LSB

The Object Segment to be addressed is given by the Index. If several Segments are overlap-
ping, the same memory area can be addressed with each of those indexes.

The Data Length gives the maximum amount in bytes for the transfer. If the value is 0, the
complete segment is to be accessed.

8.4 EDS

The Electronic Data Sheet is a general description of a device type. More details are defined in
/3/ DS-306 "Electronic Data Sheet Specification".

The capability of a device to manage dynamic variables is declared in the EDS with an entry in
the section DeviceInfo:

DynamicChannelsSupported=1

If the entry does not exist, it is assumed to be 0. The type of this entry is Unsigned32. The
lowest bit states the general facility of allocating dynamic variables. Bit 2 is set by /4/ Profile
DS-405 for a pre-defined segment description. Bit 3 is set, if the objects are already described
in the EDS. Any other bit may define a specialised strategy. Actually bits 4-31 are reserved by
CiA.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 54 -

If the entry DynamicChannelsSupported is non-zero, the section DynamicChannels de-
scribes the usable segments. The following keywords are used:

NrOfSeg Number of segments. It is a decimal number or hexadecimal with leading 0x.

The following entries are counted with an "entry index". This is a decimal unsigned32 value
starting with 1.

Type<entry index>=data type

The data type is the data type of the objects which can be stored in this seg-
ment. It is coded as in the entry DataType of object descriptions.

Dir<entry index>={ ro | wo | rww}

This entry distinguishes between inputs (ro) and outputs (wo/rww).

Range<entry index>=index range

The index range is pair of numbers, the first giving the start index, the second
giving the end index. The numbers are unsigned16 hexadecimal with leading
0x.

PPOffset<entry index>=segment offset in process picture [, bit address
difference]

This is the offset of this segment inside the process picture. The number is un-
signed32 decimal or hexadecimal with leading 0x. If the data type of this seg-
ment is Boolean (0x0001), the bit address difference has to be defined as a
decimal number or hexadecimal number with leading 0x. Most often this will
have the values 1 or 8.

MaxCnt<entry index>=maximum count

Maximum number of objects which can be allocated in this segment. The un-
signed32 number is decimal or hexadecimal with leading 0x.

MSpecific<entry index>=generic

This entry is optional. The contents are manufacturer specific. This entry allows
to extent the description for application specific purposes. The contents will be
interpreted by specialised configuration tools only. They have the responsibility
to detect, if the content is correct. For example this could be done by using a
unique marker at the beginning of the content.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 55 -

Example:

[DeviceInfo]

....

DynamicChannelsSupported=1

[DynamicChannels]

NrOfSeg=2

Type1=5

Dir1=ro

Range1=0x7001-0x7017

PPOffset1=0

MaxCnt1=4096

Type2=1

Dir2=ro

Range2=0x7018-0x7018

PPOffset2=4096,1

MaxCnt2=64

This example defines two segments. The first describes the storage of 4 kByte of byte input
variables, the second additional 64 Boolean input variables.

The EDS describes the state of a device as it is delivered by the device manufacturer. In this
state, the application of the device is not defined yet. For this reason, the application variables
cannot be defined, so any dynamic variables must not be defined in the EDS. Exception see
above.

8.5 DCF

The Device Configuration File is the description of a concretely configured and programmed
device. More details are defined in /3/ DSP-306 "Electronic Data Sheet Specification".

Besides the information of the EDS, the DCF stores the dynamic allocated objects. With this
information it is possible for a configuration tool to retrieve the objects of a programmed device.

In the other direction it is possible to define variables with a project planning tool and after-
wards use that information by the linker/relocator/resource definition editor of a programming
system. This makes it possible to implement programming systems with nearly no knowledge of
CANopen.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 56 -

9 Program Download

In this chapter, a common way for program downloading to a device via its object dictionary is
specified. Here only the mechanism for performing the program download is specified but not
the structure of program data and not the data structure. Alternative mechanisms can be used
with the help of the OS Command and OS Prompt objects 1023h to 1026h as described in DS-
301.

The specified mechanism can be used for downloading complete programs to devices (e.g. if a
device only provides a kind of CANopen bootstrap-loader) or only parts of a program (e.g. spe-
cific tasks of real-time systems). The data structure of the transferred program data has to be
specified by the manufacturer (e.g. INTEL-HEX format or binary format).

Further specifications for the program download have to be made in specific device profiles
(e.g. in /4/ DS-405 for the download of PLC programs).

For the download of the program data a new object is introduced:

Index Object Name Type Attr. M/O

1F50h ARRAY Download program data Domain rw O

The sub-objects for the download program data object are:

Index Sub-index Field in Download Program Data Data Type

1F50h 00h Number of different programs supported on the
node

Unsigned8

01h program number 1 Domain

02h program number 2 Domain

:

FEH program number 254 Domain

If the download fails, the Device responds with an Abort SDO Transfer (error code
0606 0000h).

A second object is specified for controlling the execution of stored programs:

Index Object Name Type Attr. M/O

1F51H ARRAY Program Control Unsigned8 RW O

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 57 -

The sub-objects for the Program Control Object are:

Index Sub-Index Field in Program Control Data Type

1F51H 0H Number of different programs on the node Unsigned8

1H program number 1 Unsigned8

2H program number 2 Unsigned8

:

FEH program number 254

The range for the sub-objects of the Program Control Object is 0 to 2.

The values have the following meaning:

0 - stop program (W) / program stopped (R)

1 - start program (W) / program running (R)

2 - reset program (W) / program stopped (R)

If the action is not possible, the Device responds with an Abort SDO Transfer (error code
0800 0024h).

A third object is defined to support verification of the version of the stored program number 1
(application software)1:

Index Object Name Type Attr. M/O

1F52H ARRAY Verify Application Software Unsigned32 RW O

The sub-object of the Verify Application Software -object are:

Index Sub-Index Field in Program Control Data Type

1F52H 0H Number of supported entries Unsigned8

1H Application software date Unsigned32

2H Application software time Unsigned32

Application software date contains the number of days since January 1, 1984. Application
software time contains the number of milliseconds after midnight (00:00).

Note that only the date and time of a single application program is supported. Dates and times
of programs 2 to 254 are not supported. Hence, if the application software is a single entity, it

1 Note that the object 100Ah (Manufacturer Software Version) of DS-301 can be regarded as a version

number of a fixed program of a non-programmable node or as a firmware (like boot block and operating
system) version number of a programmable node. Hence, a separate object for re-programmable appli-
cation software is defined.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 58 -

should be the program number 1. In case of two or more programs, one possibility could be to
store the latest update time and date of any of the programs 2 to 254 into the object 1F54.

CANopen manager owned objects

Two objects are specified for verification of the version of the application software at the
slaves:

The sub-objects for the Program Control Object are:

Index Object Name Type Attr. M/O

1F53h ARRAY Expected application SW date UNSIGNED32 rw O

1F54h ARRAY Expected application SW time UNSIGNED32 rw O

ExpectedApplicationSWDate contains the number of days since January 1, 1984. Expecte-
dApplicationSWTime contains the number of milliseconds after midnight (00:00).

Sub-Index 0 NrOfSupportedObjects has the RO value 127. Sub-Index i (with i=1..127, i !=
Node-ID of Configuration Manager): Stores the expected application software date/time of the
slave that has Node-ID i.

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 59 -

10 Summary of object dictionary extensions

SDO manager and SDO requesting related objects

Index Object Name Type Attr. M/O

1F00h VAR Request SDO (c->s) UNSIGNED32 wo M

1F01h VAR Release SDO (c->s) UNSIGNED32 wo M

1F02h ARRAY SDO manager COB-IDs UNSIGNED32 rw M

1F03h ARRAY SDO connections part 1 UNSIGNED32 ro M

1F04h ARRAY SDO connections part 2 UNSIGNED32 ro O

1F05h ARRAY SDO connections part 3 UNSIGNED32 ro O

1F06h ARRAY SDO connections part 4 UNSIGNED32 ro O

1F10h VAR Dynamic SDO connection state UNSIGNED32 rw M

1F11h VAR Slave failed UNSIGNED16 ro O

Configuration manager related objects

Index Object Name Type Attr. M/O

1F20h ARRAY Store DCF DOMAIN rw O

1F21h ARRAY Storage format UNSIGNED8 rw O

1F22h ARRAY Concise DCF DOMAIN rw O

1F23h ARRAY Store slave EDS DOMAIN rw O

1F24h ARRAY Slave EDS storage format UNSIGNED8 rw O

1F25h ARRAY Configure slave UNSIGNED32 rw O

1F26h ARRAY Expected configuration date UNSIGNED32 rw O

1F27h ARRAY Expected configuration time UNSIGNED32 rw O

Program control related objects

Index Object Name Type Attr. M/O

1F50h ARRAY Download program data DOMAIN rw O

1F51h ARRAY Program control UNSIGNED8 rw O

1F52h ARRAY Verify application software UNSIGNED32 rw O

1F53h ARRAY Expected application SW date UNSIGNED32 rw O

1F54h ARRAY Expected application SW time UNSIGNED32 rw O

Network variables related objects

Index Object Name Type Attr. M/O

1F70h RECORD Process picture RECORD rw O

CiA DSP-302 V3.2.1 Framework for CANopen Managers CiA e.V.
and Programmable CANopen Devices

- 60 -

NMT master related objects

Index Object Name Type Attr. M/O

1F80h VAR NMT startup UNSIGNED32 rw O

1F81h ARRAY Slave assignment UNSIGNED32 rw O

1F82h ARRAY Request NMT UNSIGNED8 rw O

1F83h ARRAY Request guarding UNSIGNED8 rw O

1F84h ARRAY Device type identification UNSIGNED32 rw O

1F85h ARRAY Vendor identification UNSIGNED32 rw O

1F86h ARRAY Product code UNSIGNED32 rw O

1F87h ARRAY Revision number UNSIGNED32 rw O

1F88h ARRAY Serial number UNSIGNED32 rw O

1F89h VAR Boot time UNSIGNED32 rw O

1F90h ARRAY Flying master timing parameter UNSIGNED16 rw O

1F91h ARRAY Startup-capable device timing UNSIGNED16 rw O

Defined SDO abort codes

Abort code Description

060A 0023h Resource not available: SDO connection

0800 0024h Requested action cannot be performed by the application

0800 0024h Data set empty

Identifier definitions

COB-ID defined by

071h to 076h Flying master

6E0h SDO manager

