
CiA Draft Standard 405

CANopen
Interface and Device Profile for

IEC 61131-3 Programmable Devices

Version 2.0
Date: 21.05.2002

© CAN in Automation e. V.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- i -

HISTORY

Date Changes

 March 1998 Document Version 1.0 released

 December 2000 Document Version 2.0 released
• editorial changes
• adaptation to Version 4.01 of CiA DS-301
• adaptation to Version 3.0 of CiA DSP-302
• function blocks for SDO with arbitrary length
• Tool Integration redefined
• clarifications

May 2002 Document as Draft Standard Version 2.0 released

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- ii -

TABLE OF CONTENTS

1 SCOPE 1

2 REFERENCES 2

3 TERMS AND DEFINITIONS 2

3.1 DATA TYPES 2
3.2 VARIABLES 3
3.3 PROGRAM ORGANIZATION UNITS (POU) 3
3.4 CONFIGURATION ELEMENTS 4
3.5 ACCESS TO NETWORK VARIABLES DEFINITION 4
3.6 CANOPEN PROFILE-SPECIFIC DEFINITIONS 4

4 DATA TYPES 5

4.1 DATA TYPE CONVERSION FUNCTIONS 6
4.2 DATA TYPE REPRESENTATION ISSUES 7

5 ACCESSING CANOPEN FROM WITHIN IEC 61131-3 8

5.1 VARIABLE BASED ACCESS 8
5.1.1 Definition of the data direction 8
5.1.2 Object dictionary entries for IEC 61131-3 variables 9
5.1.3 Variable names 10

5.2 FUNCTION BLOCK BASED ACCESS 11
5.2.1 General function block design issues 12
5.2.2 Data types 12
5.2.3 SDO access 14
5.2.4 Other function blocks 17

6 TOOL INTEGRATION 20

6.1 BASIC CONCEPT 20
6.2 NODE LIST 20
6.3 ACCESS HANDLER 21

7 UTILITY FUNCTIONS 22

7.1 REMOTE FUNCTIONS BETWEEN RESOURCES 22
7.1.1 Down-/Upload 22

7.2 OBJECT DICTIONARY ENTRIES 22
7.2.1 Project name 23
7.2.2 Configuration 23
7.2.3 Resources 24
7.2.4 Task 25
7.2.5 Start/Stop (Program/Task) 27
7.2.6 Debugging/Monitoring 27

8 APPENDIX (INFORMATIVE) 28

8.1 DETAILED DESCRIPTION OF NETWORK VARIABLE SEGMENTS 28
8.2 IEC 61131-3 OBJECT DICTIONARY OVERVIEW 29
8.3 EXAMPLE DCF FILE 31
8.4 APPLICATION NOTES 31

8.4.1 Network variables 31
8.4.2 Data type representation issues 32
8.4.3 EDS 33
8.4.4 Tool integration 33

8.5 IEC 61131-3 SAMPLE CODE 35
8.6 IMPLEMENTATION MODELS FOR IEC 61131-3 DATA TYPE SUPPORT 35

8.6.1 Native support 35
8.6.2 Padding to next best match 35
8.6.3 Using arrays or struct 36

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- iii -

FIGURES

Figure 1: Interfaces... 1
Figure 2: IEC 61131-3 software organisation... 3
Figure 3: Direction of Network Variables .. 8
Figure 4: Type CIA405_DEVICE ... 12
Figure 5: Type CIA405_SDO_ERROR... 12
Figure 6: Type CIA405_EMCY_ERROR .. 12
Figure 7: Type CIA405_STATE... 13
Figure 8: Type CIA405_TRANSITION_STATE... 13
Figure 9: Type CIA405_CANOPEN_KERNEL_ERROR.. 13
Figure 10: Function block CIA405_SDO_WRITE4 ... 14
Figure 11: CIA405_SDO_WRITE4 typical timing diagram... 14
Figure 12: Function block CIA405_SDO_WRITE ... 15
Figure 13: Function block CIA405_SDO_READ4... 16
Figure 14: CIA405_SDO_READ4 typical timing diagram.. 16
Figure 15: Function block CIA405_SDO_READ... 17
Figure 16: Function block CIA405_ GET_LOCAL_NODE_ID... 17
Figure 17: Function block CIA405_ GET_STATE .. 18
Figure 18: Function block CIA405_ GET_CANOPEN_KERNEL_STATE.............................. 18
Figure 19: Function block CIA405_ NMT ... 18
Figure 20: Function block CIA405_RECV_EMCY_DEV ... 19
Figure 21: Function block CIA405_RECV_EMCY .. 19
Figure 22: Correlation between programming and network configuration 20
Figure 23: Project structure ... 22
Figure 24: Data representation with PDO on CANopen non-compliant PLCs 32
Figure 25: Data representation with SDO on CANopen non-compliant and compliant PLCs. 32
Figure 26: Information exchange via DCF.. 33
Figure 27: Data exchange using converter module.. 33
Figure 28: Compatibility for NVX format ... 34

TABLES

Table 1: Data types... 5
Table 2: Data types not transferable via PDO.. 6
Table 3: Data type conversion functions.. 6
Table 4: Input network variables.. 9
Table 5: Output network variables... 10
Table 6: New data types ... 11
Table 7: Function blocks ... 11
Table 8: Error codes for type CIA405_CANOPEN_KERNEL_ERROR.................................. 14
Table 9: Entries in Nodelist file .. 21
Table 10: List of object dictionary entries... 30

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 1 -

1 Scope
This document represents the standardised CANopen Interface and Device Profile for IEC
61131-3 programmable devices like PLCs.

All the above devices use communication techniques which conform to those described in the
CiA Draft Standard DS-301 (Application Layer and Communication Profile) and Draft Standard
Proposal DSP-302. These documents should be consulted in parallel to this profile.

In general, generating an application implements the handling of up to five interfaces see the
figure.

Figure 1: Interfaces

This paper covers the following interfaces

A) the access to a CANopen communication system from within an IEC 61131-3 program
a) based on variables, i.e. access to elementary IEC 61131-3 variable objects,
b) based on calls to function block

B) utility functions for debugging, monitoring and network management
C) interface between CANopen tools and IEC 61131-3 programming environment
All other interfaces are manufacturer specific (D) or uses CANopen services (E).

Note Figure 1 describes not necessarily the use of different tool for programming and configu-
ration. One tool may handle both functionality and hide the interfaces.

IEC 61131-3 PLC

IEC 61131-3 Programming
environment

CANopen tools
(e.g. Network configuration

tools)

CANopen Network

Application
(IEC 61131-3 Program)

C

D

E

B

A

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 2 -

2 References

/IEC 61131/ IEC 61131 First edition 1993-03
Programmable controllers
- Part 1: general information
- Part 3: programming languages
- Part 5: messaging services

/DS-301/ Application Layer and Communication Profile
CiA Draft Standard 301 Version 4.01, 2000-06

/DSP-302/ Framework for programmable CANopen devices
CiA Draft Standard Proposal 302 Version 3.0, 2000-06

/DSP-305/ Layer Setting Services and Protocols
CiA Draft Standard Proposal 305 Version 1.1, 2002-02

/DSP-306/ Electronic Data Sheet Specification for CANopen
CiA Draft Standard Proposal 306 Version 1.1, 2001-06

3 Terms and definitions

3.1 Data types
IEC 61131-3 specifies three kinds of data types:

• Elementary data types

Length Keywords

1 Bit BOOL

8 Bits SINT, USINT, BYTE

16 Bits INT, UINT, WORD

32 Bits DINT, UDINT, REAL, DWORD

64 Bits LINT, ULINT, LREAL, LWORD

Implementation depend-
ent

TIME, DATE, TIME_OF_DAY,
DATE_AND_TIME, STRING

• Generic data types

Generic data types group elementary data types hierarchically. They are identified by the
prefix "ANY" (e.g. ANY_NUM, ANY_INT,...).

• Derived data types

User- or manufacturer-specified data types (Structures). Types to match CANopen data ty-
pes (e.g. CIA405UINT24, ...).

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 3 -

3.2 Variables
IEC-Variables can be represented symbolically or directly (%IX..., %QW ..). IEC 61131-3 knows
two kinds of variables:

• Single-element variable

Variable consists of one element.

• Multi-element variable

Arrays and structures.

3.3 Program organization units (POU)
The POUs are the actual programming modules, an IEC program consists of. The program
organisation units defined by IEC 61131-3 include function, function block, and program.

Configuration

Resource Resource

Task Task

Pro-
gram

(POUs)

Pro-
gram

(POUs)

Pro-
gram

(POUs)

Global and directly represented variables

Access paths

Task Task

Pro-
gram

(POUs)

Pro-
gram

(POUs)

Pro-
gram

(POUs)

Communication function (see IEC 61131-5)

Figure 2: IEC 61131-3 software organisation

• Function

A function has one or more input values and exactly one output value. lt does contain no
internal state information, i.e. invocation of a function with the same arguments (inputs) al-
ways yields the same value (output). A function can be executed from a program, a function
block or another function.

• Function block

A function block has one or more input values and one or more output values. Multiple in-
stances (copies) of a function block are allowed. A function block keeps its internal state in-
formation. It can be executed from a program or another function block.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 4 -

• Program

This POU type represents the "main program". Instances of programs can only be created
within resources (by a task).

3.4 Configuration elements
The configuration corresponds to a programmable controller system as defined in IEC 61131-3-
1. A configuration contains one or more resources, each of which contains one or more pro-
grams executed under the control of zero or more tasks.

• Global variable

A variable whose scope is global (Scope of a declaration applying to all POUs within a re-
source or configuration).

• Resource

"Signal processing function" and its "man-machine interface" and "sensor and actuator in-
terface functions ", as defined in IEC 61131-3-1. Normally a resource means one PLC’s
central processing unit.

• Task

A task is defined as an execution control element which is capable of invoking, either on a
periodic basis or upon the occurence of the rising edge of a specific Boolean variable, the
execution of a set of program organization units, which can include programs and function
blocks.

• Access path

The association of a symbolic name with a variable for the purpose of open communication.

3.5 Access to network variables definition
In a network programmable nodes can be characterized as a process having input variables
and output variables. The set of variables will be arguments of the program and hence will be
only known in a final state when the program has been written. The arguments must be han-
dled as variables located in the object dictionary.

This profile uses the terms and definitions of /DSP-302/ "Framework for programmable
CANopen Devices". It defines the usage of network variables in a way independent of the type
of the programmable device. Here, some restrictions are made for IEC 61131-3 programmable
devices.

3.6 CANopen profile-specific definitions
CANopen provides the ability to identify the profile of a node. Therefore the CANopen Com-
munication Profile /DS-301/ specifies an object 1000h ("Device Type"). The object 1000h is a
32 Bit word, subdivided into two 16 Bit words. The LSB contains the profile number, the MSB
contains additional information. For a device, following these specification the profile number is
set to 405. The additional information (MSB) is set to 0 and is reserved for further use by CiA.
The profile does not define a default mapping.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 5 -

4 Data types
IEC 61131-3 and CANopen define different data types. The following table defines the as-
signment of types that are equivalent and that are usable as network variables. For a handling
of these data types in a file format it is useful to assign numbers to the data type. The table
starts with the data types that are defined in CANopen and uses the same coding. Additional
data types of IEC 61131-3 start with A0H.

IEC 61131-3 CANopen Data width (bit) Encoding (Hex)

BOOL Boolean 1 01

SINT Integer8 8 02

INT Integer16 16 03

CIA405INT24 Integer24 24 10

DINT Integer32 32 04

CIA405INT40 Integer40 40 12

CIA405INT48 Integer48 48 13

CIA405INT56 Integer56 56 14

LINT Integer64 64 15

USINT Unsigned8 8 05

UINT Unsigned16 16 06

CIA405UINT24 Unsigned24 24 16

UDINT Unsigned32 32 07

CIA405UINT40 Unsigned40 40 18

CIA405UINT48 Unsigned48 48 19

CIA405UINT56 Unsigned56 56 1A

ULINT Unsigned64 64 1B

REAL Float 32 08

BYTE Unsigned8 8 A4

WORD Unsigned16 16 A5

DWORD Unsigned32 32 A6

LWORD Unsigned64 64 A7

Table 1: Data types

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 6 -

The following data types are equivalent, but cannot be transferred via PDOs:

IEC 61131-3 CANopen Encoding (Hex)

TIME Time_Difference 0D

DATE Time_Of_Day 0C

TIME_OF_DAY Time_Of_Day 0C

STRING Visible String 09

Table 2: Data types not transferable via PDO

The following IEC 61131-3 data types do have no equivalent in CANopen: LREAL,
DATE_AND_TIME,. The following CANopen data types do have no equivalent in IEC 61131-3:
Octet String, Domain.

4.1 Data type conversion functions
Type conversion functions shall be defined as in IEC 61131-3 (i.e. <from>_TO_<to>, e.g.
CIA405uint24_TO_DINT) in both directions for the following combinations:

Type1 Type2

CIA405INT24 DINT

CIA405INT40 LINT

CIA405INT48 LINT

CIA405INT56 LINT

CIA405UINT24 UDINT

CIA405UINT40 ULINT

CIA405UINT48 ULINT

CIA405UINT56 ULINT

CIA405UINT24 DWORD

CIA405UINT40 LWORD

CIA405UINT48 LWORD

CIA405UINT56 LWORD

Table 3: Data type conversion functions

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 7 -

4.2 Data type representation issues
CANopen defines a certain representation for data types, while IEC 61131-3 does not. If the
IEC 61131-3 system can use the same representation as defined in CANopen, there will be no
problem. The strategy of this standard is as follows:

a) Data of the network (typically PDOs) made available to the IEC 61131-3 as network vari-
ables through entries in the range A000-AFFF, typically mapped into the process image of
the IEC 61131-3 system shall be presented to the IEC 61131-3 in the IEC 61131-3 sys-
tem's native (platform dependent, potentially CANopen non-compliant) data representation.
The CANopen data type of these data items is known to the CANopen kernel, all necessary
conversions will have to be done before putting the value into the process image resp. after
retrieving it from the process image.

b) All other data, for which the data type is potentially unknown to the CANopen kernel and/or
the IEC 61131-3 application (e.g. SDO data) shall be presented to the IEC 61131-3 system
in standard CANopen data format as a stream of raw bytes. Conversion functions shall be
supplied to convert this data representation to native IEC 61131-3 format, but the knowl-
edge about the data type has to be available at run-time.

Refer Chapter 8.4.2 for application notes.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 8 -

5 Accessing CANopen from within IEC 61131-3
As mentioned in the introduction, this paper covers two methods of accessing the CANopen
network:

1. Variable-based access, accessing individual variables from within the IEC 61131-3 program
according to the Network Variables of /DSP-302/.

2. Function block based access, calling function blocks to write and/or read data. This is im-
plemented with SDO access.

3. Additional management functions for processing Emergency, LSS and Network state infor-
mation.

5.1 Variable based access
All objects located in the range A000h - AFFFh of the object dictionary of a node shall be visi-
ble as variables to an application on that node programmed within IEC 61131-3. Which kind of
variables are being used, e.g.

• directly represented variables

• external variables

• parameters (of programs or function blocks)

shall be left to the IEC 61131-3 implementation.

5.1.1 Definition of the data direction

The terms input and output are defined in the Framework for Programmable Devices /DSP-
302/. An input has the CANopen data direction ro, an output has the CANopen data direction
wo (rww respectively) as with every other device type, too.

Hint:

This definition comes from the network point of view. This shall be explained in Figure 3 by an
example for transferring a physical input:

CAN

IO Devicephysical input 6000H,1

TxPDO

RxPDO

DPRAM

write to
DPRAM

write to
application

PLC
A4C0H

Figure 3: Direction of Network Variables

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 9 -

The object A4C0H is defined as an output, since another device can write values to it, which is
(from the CANopen point of view) the same as writing a value to a digital output. If the device
has a physical output or a software, that deals with these values - is in principle no difference.
So one can use the terminology of “writing values to the PLC application”.

From the PLC programmers point of view, the application will read the value – this is the same
as if it would read the digital input lines directly without having a bus between.

5.1.2 Object dictionary entries for IEC 61131-3 variables

The Framework for Programmable Devices /DSP-302/ defines the usage of so-called seg-
ments. It leaves the concrete placement of the segments open. To ease implementations and
for a much easier usage of software from different manufacturers, the usage of the segments
is specified for IEC 61131-3 programmed devices: The segments are placed in the index range
A000h -AFFFh. This allows any device of another profile (e.g. I/O device or drive unit) to use
the standard object dictionary entries of that profile and additionally use the Network Variables.

Inputs:

Start-Index Data Type Direction

A000H Integer8 ro

A040H Unsigned8 ro

A080H Boolean ro

A0C0H Integer16 ro

A100H Unsigned16 ro

A140H Integer24 ro

A180H Unsigned24 ro

A1C0H Integer32 ro

A200H Unsigned32 ro

A240H Float (32) ro

A280H Unsigned40 ro

A2C0H Integer40 ro

A300H Unsigned48 ro

A340H Integer48 ro

A380H Unsigned56 ro

A3C0H Integer56 ro

A400H Integer64 ro

A440H Unsigned64 ro

Table 4: Input network variables

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 10 -

Outputs:
Start-Index Data Type Direction

A480H Integer8 rww

A4C0H Unsigned8 rww

A500H Boolean rww

A540H Integer16 rww

A580H Unsigned16 rww

A5C0H Integer24 rww

A600H Unsigned24 rww

A640H Integer32 rww

A680H Unsigned32 rww

A6C0H Float (32) rww

A700H Unsigned40 rww

A740H Integer40 rww

A780H Unsigned48 rww

A7C0H Integer48 rww

A800H Unsigned56 rww

A840H Integer56 rww

A880H Integer64 rww

A8C0H Unsigned64 rww

Table 5: Output network variables

This distribution described according to the /DSP-302/ description rules is given in the Appen-
dix.

The entries MaxCnt, missing in the list above, depend on the available memory of the device.
For a further simplification, the EDS files for devices following DS-405 are allowed to omit this
description. This is marked by setting additionally the second bit of the entry DynamicChan-
nelsSupported of section DeviceInfo:

[DeviceInfo]
....
DynamicChannelsSupported=3

5.1.3 Variable names

Object dictionary entries which have names that are no legal variable names for IEC 61131-3
shall not be usable to the IEC 61131-3 system. No automatic renaming is defined by this pa-
per.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 11 -

5.2 Function block based access
IEC 61131-3 Function blocks

This chapter describes standard function blocks to access CANopen from IEC 61131-3. All
function blocks and data types defined in this chapter are optional in the sense of CANopen
standardisation.

The following table can be used by IEC 61131-3 compliant systems to state the features cov-
ered:

Nr. Data type

1 CIA405_DEVICE

2 CIA405_SDO_ERROR

3 CIA405_EMCY_ERROR

4 CIA405_STATE

5 CIA405_TRANSITION_STATE

6 CIA405_CANOPEN_KERNEL_ERROR

Table 6: New data types

Nr. Function block

1 CIA405_RECV_EMCY_DEV

2 CIA405_RECV_EMCY

3 CIA405_SDO_WRITE4

4 CIA405_SDO_WRITE7

5 CIA405_SDO_WRITE14

6 CIA405_SDO_WRITE21

7 CIA405_SDO_READ4

8 CIA405_SDO_READ7

9 CIA405_SDO_READ14

10 CIA405_SDO_READ21

11 CIA405_GET_LOCAL_NODE_ID

12 CIA405_GET_STATE

13 CIA405_GET_CANOPEN_KERNEL_STATE

14 CIA405_NMT

15 CIA405_SDO_WRITE

16 CIA405_SDO_READ

Table 7: Function blocks

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 12 -

5.2.1 General function block design issues

5.2.1.1 Naming conventions

A specific prefix shall be given to all function block and data type names defined herein. Cur-
rently ‘CIA405’ is used as that prefix.

5.2.1.2 Data types vs. data length

It is possible to represent transmission of data of arbitrary length within IEC 61131-3. However,
the interfaces to functions blocks allowing for that may be quite more difficult to use and un-
derstand. Therefore different functions blocks are defined herein, for the transmission of a
fixed (maximum) amount of data each as well as blocks for arbitrary length.

5.2.1.3 User defined data types

User defined data types are used to represent items of CANopen in IEC 61131-3.

5.2.1.4 Time out

The interface is designed such that it is possible to wrap the calls with a timer block to imple-
ment time-outs. Additionally, it is allowed that lower level CANopen software implement their
own time-outs and report such as errors to the caller.

5.2.1.5 Additional parameters

Some systems may support or require additional information in the function blocks. For exam-
ple a PLC may have several CAN channels. In that case the function blocks will require the
channel number of the service. It is allowed to add these parameters to the function blocks.

Applications depending on that will always have to be adapted, if the environment is changed.
So the freedom of additional parameters will not lead to really new compatibility/portability
problems.

5.2.2 Data types

The following data types shall be used with the standard function blocks:

Type CIA405_DEVICE shall represent the Node ID of a device:

TYPE
CIA405_DEVICE: USINT (0..127);

END_TYPE

Figure 4: Type CIA405_DEVICE

Type CIA405_SDO_ERROR shall represent error information as defined in /DS-301/:

TYPE
CIA405_SDO_ERROR: UDINT;

END_TYPE

Figure 5: Type CIA405_SDO_ERROR

Type CIA405_EMCY_ERROR contains emergency error information, as specified in /DS-301/:

TYPE
CIA405_EMCY_ERROR : STRUCT

EMCY_ERROR_CODE : WORD;
ERROR_REGISTER : BYTE;
ERROR_FIELD : ARRAY [1..5] of BYTE;

END_STRUCT;
END_TYPE

Figure 6: Type CIA405_EMCY_ERROR

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 13 -

Type CIA405_STATE describes the state of the CANopen network layer, as defined in /DS-
301/. The states INIT, RESET_COMM, RESET_APP, PRE_OPERATIONAL, STOPPED,
OPERATIONAL correspond to the same states in /DS-301/. The State UNKNOWN shall be
used, if the actual state of the device is not known (in example, if no guarding of the device is
performed). The state NOT_AVAIL shall be used, if it is known, that the device is not available
(in example, if guarding is performed and the device does not answer).

TYPE
CIA405_STATE : (

INIT,
RESET_COMM,
RESET_APP,
PRE_OPERATIONAL,
STOPPED,
OPERATIONAL,
UNKNOWN,

 NOT_AVAIL
);

END_TYPE

Figure 7: Type CIA405_STATE

Type CIA405_TRANSITION_STATE describes the state transitions of the CANopen network
layer, as defined in /DS-301/:

TYPE
CIA405_TRANSITION_STATE : (

START_REMOTE_NODE,
STOP_REMOTE_NODE,
ENTER_PRE_OPERATIONAL,
RESET_NODE,
RESET_COMMUNICATION

);
END_TYPE

Figure 8: Type CIA405_TRANSITION_STATE

Type CIA405_CANOPEN_KERNEL_ERROR contains error information about the CANopen
Kernel.

TYPE
CIA405_CANOPEN_KERNEL_ERROR : WORD;

END_TYPE

Figure 9: Type CIA405_CANOPEN_KERNEL_ERROR

Description of the CIA405_CANOPEN_KERNEL_ERROR value range:

Value Description

0000h no error

0001h Other error (see further error registers)

0002h Data overflow

0003h Time out

0004h - 000Fh Reserved for further SDO errors

0010h CAN Bus off

0011h CAN Error Passive

0012h - 001Fh Reserved for further internal Kernel errors

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 14 -

0021h - 00FFh Manufacturer specific

0100h - FFFFh Reserved by CiA

Table 8: Error codes for type CIA405_CANOPEN_KERNEL_ERROR

5.2.3 SDO access

5.2.3.1 SDO write

FUNCTION_BLOCK CIA405_SDO_WRITE4
VAR_INPUT

DEVICE : CIA405_DEVICE;
INDEX : WORD;
SUBINDEX : BYTE;
ENABLE : BOOL;
DATA : ARRAY [1..4] of BYTE;
DATALENGTH : USINT;
END_VAR

VAR_OUTPUT
CONFIRM : BOOL := FALSE;
ERROR : CIA405_CANOPEN_KERNEL_ERROR;

 ERRORINFO : CIA405_SDO_ERROR;
END_VAR

END_FUNCTION_BLOCK

Figure 10: Function block CIA405_SDO_WRITE4

Enable � �

Confirm � �

Figure 11: CIA405_SDO_WRITE4 typical timing diagram

Figure 11 shows a typical timing diagram for CIA405_SDO_WRITE4. After all data is provided
to the inputs, ENABLE is set to TRUE �. The SDO will be sent, and when the CANopen soft-
ware reports success to the function block, output CONFIRM will be changed to TRUE �. The
caller will see this and change ENABLE to FALSE �, which in turn will cause output CONFIRM
to change to FALSE �.

The specification is as follows:

1. With a rising edge on input ENABLE, the function block will sample the inputs and initiate
the transmission of the SDO specified in DATA and DATALENGTH to the recipient specified
with DEVICE, INDEX and SUBINDEX. The value of DEVICE is limited to a range of 1 to
127. For access to the local object dictionary it is allowed to use the value 0 for DEVICE.

2. With TRUE on input ENABLE, the function block is allowed to continue execution. If a result
is reported on the call by lower level CANopen software, outputs CONFIRM, ERROR and
ERRORINFO are set accordingly.

3. With a falling edge on input ENABLE the function block will terminate. If the transmission
did not finish yet, it will be aborted if possible. Outputs CONFIRM and ERROR will both be
set to FALSE respectively "no error".

4. With a FALSE on input ENABLE, the function block will return immediately and not take any
action.

The result of a writing operation is reported (immediately after the writing call or afterwards) in
outputs CONFIRM, ERROR and ERRORINFO with a rising edge on either CONFIRM or
ERROR. In case of ERROR is equal to 1 (other error), ERRORINFO will give more specified

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 15 -

information on the cause. This is especially true for the occurrence of an SDO Abort. Then
ERRORINFO contains the Abort code.

It cannot be assumed in general that this function can synchronously complete; rather, it
should be possible to have this function continue to be executed while the call to
CIA405_SDO_WRITE4 returns and the PLC program is continued. Therefore, the result of a
call may be available only several cycles after a rising edge has been applied to ENABLE.

5.2.3.2 SDO write for different data lengths

In addition to CIA405_SDO_WRITE4 , function blocks

• CIA405_SDO_WRITE7,

• CIA405_SDO_WRITE14,

• CIA405_SDO_WRITE21,

• etc.

may be implemented with the same interface as CIA405_SDO_WRITE4, except that the upper
limit of the array on input DATA shall be changed to 7, 14, or 21 respectively. The first element
of the array represents the first data byte of the data stream transmitted with an
CIA405_SDO_WRITEx function block.

5.2.3.3 SDO write for arbitrary length

This function block can be used as alternative to the CIA_SDO_WRITEx functions blocks. It
supports the arbitrary length of data.

FUNCTION_BLOCK CIA405_SDO_WRITE
VAR_INPUT

DEVICE : CIA405_DEVICE;
INDEX : WORD;
SUBINDEX : BYTE;
ENABLE : BOOL;
DATA : ANY
DATALENGTH : USINT;

END_VAR
VAR_OUTPUT

CONFIRM : BOOL := FALSE;
ERROR : CIA405_CANOPEN_KERNEL_ERROR;

 ERRORINFO : CIA405_SDO_ERROR;
END_VAR

END_FUNCTION_BLOCK

Figure 12: Function block CIA405_SDO_WRITE

The behaviour and timing is the same as with CIA405_SDO_WRITE4.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 16 -

5.2.3.4 SDO read

FUNCTION_BLOCK CIA405_SDO_READ4
VAR_INPUT

DEVICE : CIA405_DEVICE;
INDEX : WORD;
SUBINDEX : BYTE;
ENABLE : BOOL;

END_VAR
VAR_OUTPUT

DATA : ARRAY [1..4] of BYTE;
DATALENGTH : USINT;
CONFIRM : BOOL;
ERROR : CIA405_CANOPEN_KERNEL_ERROR;

 ERRORINFO : CIA405_SDO_ERROR;
END_VAR

END_FUNCTION_BLOCK

Figure 13: Function block CIA405_SDO_READ4

Enable � �

Confirm � �

Figure 14: CIA405_SDO_READ4 typical timing diagram

Figure 14 shows a typical timing diagram for CIA405_SDO_READ4. After all data is provided to
the inputs, ENABLE is set to TRUE �. The SDO will be received, and when the CANopen
software reports success to the function block, output CONFIRM will be changed to TRUE �.
The caller will see this and change ENABLE to FALSE �, which in turn will cause output
CONFIRM to change to FALSE �.

The specification is as follows:

1. With a rising edge on input ENABLE, the function block will sample the inputs and initiate
the transmission of the SDO specified with DEVICE, INDEX and SUBINDEX. The value of
DEVICE is limited to a range of 1 to 127. For access to the local object dictionary it is al-
lowed to use the value 0 for DEVICE.

2. With TRUE on input ENABLE, the function block is allowed to continue execution. If a result
is reported on the call by lower level CANopen software, outputs CONFIRM, DATA and
DATALENGTH (in case of success) or ERROR and ERRORINFO (in case of failure) are set
accordingly.

3. With a falling edge on input ENABLE the function block will terminate. If the transmission
did not finish yet, it will be aborted if possible. Outputs CONFIRM and ERROR will both be
set to FALSE respectively "no error".

4. With a FALSE on input ENABLE, the function block will return immediately and not take any
action.

Like with CIA405_SDO_WRITE4, it cannot be assumed that this function can be completed
before the call to CIA405_SDO_READ4 returns. Therefore, the result may be available several
cycles after the receiving call.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 17 -

5.2.3.5 SDO read for different data lengths

In addition to CIA405_SDO_READ4, function blocks

• CIA405_SDO_READ7,

• CIA405_SDO_READ14,

• CIA405_SDO_READ21,

• etc.

 may be implemented with the same interface as CIA405_SDO_READ4, except that the upper
limit of the array on output DATA shall be changed to 7, 14, or 21 respectively. The first ele-
ment of the array represents the first data byte of the data stream transmitted with an
CIA405_SDO_READx function block.

 If a function block receives more data than specified, the ERROR output signals this with the
error code 0002h ("data overflow"). It is application dependent to use this fragment of data or
not.

5.2.3.6 SDO read for arbitrary length

This function block can be used as alternative to the CIA_SDO_READx functions blocks. It
supports the arbitrary length of data.

FUNCTION_BLOCK CIA405_SDO_READ
VAR_INPUT

DEVICE : CIA405_DEVICE;
INDEX : WORD;
SUBINDEX : BYTE;
ENABLE : BOOL;

END_VAR
VAR_OUTPUT

DATA : ANY;
DATALENGTH : USINT;
CONFIRM : BOOL;
ERROR : CIA405_CANOPEN_KERNEL_ERROR;

 ERRORINFO : CIA405_SDO_ERROR;
END_VAR

END_FUNCTION_BLOCK

Figure 15: Function block CIA405_SDO_READ

The behaviour and timing is the same as with CIA405_SDO_READ4.

5.2.4 Other function blocks

5.2.4.1 Own node id

 Function block CIA405_GET_LOCAL_NODE_ID returns the own node ID.

 FUNCTION_BLOCK CIA405_GET_LOCAL_NODE_ID
VAR_INPUT

ENABLE : BOOL;
END_VAR

 VAR_OUTPUT
CONFIRM : BOOL;

 DEVICE : CIA405_DEVICE;
 END_VAR

 END_FUNCTION_BLOCK

Figure 16: Function block CIA405_ GET_LOCAL_NODE_ID

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 18 -

5.2.4.2 Query state

 Function block CIA405_GET_STATE returns the current state of a CANopen network device:

 FUNCTION_BLOCK CIA405_GET_STATE
 VAR_INPUT
 DEVICE : CIA405_DEVICE;
 ENABLE : BOOL;
 END_VAR
 VAR_OUTPUT
 CONFIRM : BOOL;
 STATE : CIA405_STATE;
 END_VAR

 END_FUNCTION_BLOCK

Figure 17: Function block CIA405_ GET_STATE

The usage and behaviour of ENABLE and CONFIRM is the same like with
CIA405_SDO_WRITE4. Refer to Figure 11. If the state is not known, the function block returns
with the state UNKNOWN. This will occur, if the device is not guarded and Heartbeat is not
running. If Guarding is performed and the device does not answer or it is known for other rea-
sons, that the device is not available, the functions returns the state NOT_AVAIL. The value of
DEVICE is limited to a range of 1 to 127. If DEVICE is 0 or equal to the own Node-ID, the func-
tion block returns the state of the local communication process.

 Function block CIA405_GET_CANOPEN_KERNEL_STATE returns the current state of the
CANopen Kernel:

 FUNCTION_BLOCK CIA405_GET_CANOPEN_KERNEL_STATE
 VAR_INPUT
 ENABLE : BOOL;
 END_VAR
 VAR_OUTPUT
 CONFIRM : BOOL;
 STATE : CIA405_CANOPEN_KERNEL_ERROR;
 END_VAR

 END_FUNCTION_BLOCK

Figure 18: Function block CIA405_ GET_CANOPEN_KERNEL_STATE

The usage and behaviour of ENABLE and CONFIRM is the same like with
CIA405_GET_STATE.

5.2.4.3 Network management

 Function block CIA405_NMT controls network management functions of one or all CANopen
nodes.

 FUNCTION_BLOCK CIA405_NMT
 VAR_INPUT

 DEVICE : CIA405_DEVICE;
 STATE : CIA405_TRANSITION_STATE;
 ENABLE : BOOL;
 END_VAR
 VAR_OUTPUT
 CONFIRM : BOOL
 ERROR : CIA405_CANOPEN_KERNEL_ERROR;
 END_VAR

 END_FUNCTION_BLOCK

Figure 19: Function block CIA405_ NMT

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 19 -

Within this function block it is allowed to assign DEVICE the value 0. This means that all nodes
of the network will enter the selected state.

5.2.4.4 Receive emergency object from a specific device

 FUNCTION_BLOCK CIA405_RECV_EMCY_DEV
 VAR_INPUT

 DEVICE : CIA405_DEVICE;
 ENABLE : BOOL;
 END_VAR

 VAR_OUTPUT
 CONFIRM : BOOL;
 ERROR : CIA405_CANOPEN_KERNEL_ERROR;
 ERRORINFO : CIA405_EMCY_ERROR;
 END_VAR
 END_FUNCTION_BLOCK

 Figure 20: Function block CIA405_RECV_EMCY_DEV

 CIA405_RECV_EMCY_DEV will check if an emergency object (/DS-301/) has been received
from DEVICE. If so, and no error occurred, output CONFIRM is changed to TRUE and ERROR
to 0. If an error occurred (either during reception of this emergency object or without such an
emergency object arriving), CONFIRM is set to FALSE and ERROR is set to the responding
error value and the cause is specified in ERRORINFO. One emergency object shall be reported
only once. The value of DEVICE is limited to a range of 1 to 127.

5.2.4.5 Emergency object from any device

 FUNCTION_BLOCK CIA405_RECV_EMCY
 VAR_INPUT

 ENABLE : BOOL;
 END_VAR

 VAR_OUTPUT
 CONFIRM : BOOL;
 DEVICE : CIA405_DEVICE;
 ERROR : CIA405_CANOPEN_KERNEL_ERROR;
 ERRORINFO : CIA405_EMCY_ERROR;
 END_VAR
 END_FUNCTION_BLOCK

 Figure 21: Function block CIA405_RECV_EMCY

 CIA405_RECV_EMCY will check if an emergency object (/DS-301/) has been received from
any device. If so, and no error occurred, output CONFIRM is changed to TRUE and ERROR to
0 and DEVICE is set to the ID of the device sending the emergency object. If an error occurred
(either during reception of this emergency object or without such an emergency object arriving),
CONFIRM is set to FALSE and ERROR is set to the responding error and the cause is speci-
fied in ERRORINFO. One emergency object shall be reported only once.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 20 -

6 Tool integration
 This chapter defines the information exchange between software packages concerning the
network variables. Typical software packages in this context are the IEC 61131-3 programming
system and network configuration / network project planning system. Both systems may be
integrated in one software. In that case, the information exchange can be handled internally.
In the other case there exist two separate software packages, that have the task to exchange
some required information in a standardized way:

IEC61131
CANopen
Network

Configuration

 Figure 22: Correlation between programming and network configuration

6.1 Basic concept
The described mechanism is based on the assumption that at one time only one tool is active.
This means that only one tool has the right to write the information to the files. On a multitask-
ing operating system for example all tools can run at the same time but only one tool is allowed
to modify the project data by writing to the project files at the same time.

Further it is assumed that all necessary configuration information of a CANopen network is
stored in DCF files (file based operating system). These files and formats are already defined
within /DS-301/ specification. All used tools must be able to have read and write access to
these EDS and DCF files. It is necessary that each tool works with the same files at one loca-
tion. The way the access is handled depends on the used operating system.

In order to specify all nodes appearing in a network a special file called „Nodelist“ shall be cre-
ated. The format of this file is the same as the format of an EDS/DCF file (Windows ini file). To
manage the read/write access to the DCF files one more file called „Access Handler“ shall be
created.

Whenever a tool wants to modify the files „Nodelist“, „Access Handler“ and DCF it shall check
for existence first.

Refer chapter 8.4.4 for application notes.

6.2 Node list
This file contains all nodes within a network. The way this file is accessed by the tools depends
on the used operating system. For a file based system this means to show the tools the path
and the filename. This location must be the same where all DCF files are stored.

With the minimum information of the „Nodelist“ a tool is able to ask the user for each node’s
DCF, EDS and how to establish a read or write access. Further entries are for support of more
than one network.

To allow tools an automatic access to the „Nodelist“ the following filename is specified:

„nodelist.cpj“

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 21 -

The following entries are specified:

[Sections] and entries Description

[Topology] Optional, if this section is missing the tools can assume that
there is at least one network with the number 1.

NetName = Optional name for a net. This is helpful for a tool to give the
user assistance by identifying the net.

Nodes = 0x02 Mandatory, number of nodes within the net. The range of
the number is from 1 to 127. The number is to be read as a
hexadecimal number with leading 0x.

NodeXPresent = 0x01 Mandatory for each existing node. X specifies the CANopen
Node number within the network. X is coded decimal with no
leading zeros (e.g. Node1Present, Node10Present,
Node127Present). A value of 0x01 means the node X is
present. A value of 0x00 or missing entry means the node is
not present. All other values are reserved.

NodeXName = Node1 Optional node name. This is for tools to help the user to
identify the node. X is coded decimal with no leading zeros
(e.g. Node1Name, Node10Name, Node127Name).

NodeXDCFName = Node1.dcf Optional DCF filename for this node. The filename should be
written without path information. This entry is helpful for tools
based on a file system. X is coded decimal with no leading
zeros (e.g. Node1DCFName, Node10DCFName,
Node127DCFName).

EDSBaseName = path Optional path to the EDS files. This entry is helpful for tools
based on a file system.

Table 9: Entries in Nodelist file

Further sections and entries may exist. It is the responsibility of the tool manufacturers to avoid
collisions in the naming of sections and entries. For the syntax definition of section, entry and
the entry values refer /DSP-306/.

6.3 Access handler
The file „Access Handler“ handles the read and write access to the DCF files. The „Access
Handler“ is a simple file without sections and entries. The only information is the name of the
locking tool. If a tool wants to get the write access it can open the file exclusively. After writing
to the DCF files the tool has to release the file. If a tool was blocked by another it can inform
the user with detailed information about the locking tool.

The filename of this „Access Handler“ is „lock“.

Content Description

„Name of the tool“ Optional, name of the tool that has the read/write access.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 22 -

7 Utility functions

7.1 Remote functions between resources

7.1.1 Down-/Upload

 The program download mechanism is defined in /DSP-302/.

7.2 Object dictionary entries
 Modern programming systems provide users with project management, device configuration,
test and debug units. For testing and debugging the following entries are defined, which can
be evaluated by tools (e.g. configuration, SCADA systems). The following approach is a com-
bination of the CANopen project and the IEC 61131 configuration hierarchy. A CANopen pro-
ject consists of at least one or more PLCs in one network.

Figure 23: Project structure

 Objects defined in this chapter, that have the data type visible string use strings with the fixed
length of 32 characters. The character representation is used from the IEC 61131-3 chapter
2.1.

 For version numbers the data type unsigned32 is used. The higher word includes the major
number and the lower word the minor number, both are BCD coded.

 The following object entries have to support the read access, the write access is optional.

 To avoid consistence conflicts with CANopen tools during network configuration (download) the
following objects should support the „ObjFlags“ entry in the EDS/DCF with the „Refuse write on
download“ bit (bit 0) set. Imagine a CANopen tool writes a configuration over the CAN bus to a
node. For the tool it is not possible to suppress explicit writing on the following entries. But this
objects are handled generally by the IEC 61131 programming tool. So it is not guaranteed that
the information in the DCF matches these configuration. Note the solution with the „ObjFlags“
entry specified in /DSP-306/.

CANopen IEC 61131-3

 Project

 Configuration

 Resource Resource

 Program Task Program Task

Layer 2

Layer 1

 Configuration (*)

(*) optional

Layer 3

Layer 4

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 23 -

7.2.1 Project name

 Typical network projects consist of at least one configuration. The assignment between con-
figurations and projects could be done by the project name.

 Object Description

 Index 9800H
 Name Project_Name
 Object Code VAR
 Data Type Visible String

 Value Description

 Object Class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Visible String
 Mandatory Range No
 Default Value No

7.2.2 Configuration

 The configuration includes a list of all resources used in a PLC system. A configuration will be
identified by its name and version.

 Configuration definition structure

 Index Subindex Field in Configuration_Def Record Data Type
 0080H 0H Number of supported entries Unsigned8
 1H Configuration_Name Visible String
 2H Configuration_Version Unsigned32
 3H Number_Of_Resources Unsigned8

 Detailed object description

 Index 9501H
 Name Configuration
 Object Code RECORD
 Number of Elements 3
 Data Type Configuration_Def

 Value description

 Sub-Index 0H
 Description Number of entries
 Object class Optional
 Access RO
 PDO Mapping No
 Value Range 1H - 3H
 Mandatory Range No
 Default Value 3H

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 24 -

 Sub-Index 1H
 Description Configuration_Name
 Object class Optional
 Access R (optional W)
 PDO Mapping no
 Value Range Visible String
 Mandatory Range No
 Default Value No

 Sub-Index 2H
 Description Configuration_Version
 Object class Optional
 Access R (optional W)
 PDO Mapping no
 Value Range Unsigned32
 Mandatory Range no
 Default Value no

 Sub-Index 3H
 Description Number_Of_Resources
 Object class optional
 Access R (optional W)
 PDO Mapping no
 Value Range Unsigned8
 Mandatory Range no
 Default Value no

7.2.3 Resources

 The declaration of resources provides a mechanism to allocate tasks and programs to a re-
source (e.g. PLC CPU). A resource will be identified by its name and version. The task handle
is a reference to the first task on a resource.

 Resource definition structure

 Index Subindex Field in Resource_Def Record Data Type
 0081H 0H Number of supported entries Unsigned8
 1H Resource_Name Visible String
 2H Resource_Version Unsigned32
 3H Number_Of_Tasks Unsigned8
 4H Task_Handle Unsigned32

 Detailed object description

 Index 9600H - 96FFH
 Name Resource
 Object Code RECORD
 Number of Elements 4
 Data Type Resource_Def

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 25 -

 Value description

 Sub-Index 0H
 Description Number of supported entries
 Object class Optional
 Access RO
 PDO Mapping No
 Value Range Unsigned8
 Mandatory Range 4
 Default Value No

 Sub-Index 1H
 Description Resource_Name
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Visible String
 Mandatory Range No
 Default Value No

 Sub-Index 2H
 Description Resource_Version
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Unsigned32
 Mandatory Range No
 Default Value No

 Sub-Index 3H
 Description Number_Of_Tasks
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Unsigned8
 Mandatory Range No
 Default Value No

 Sub-Index 4H
 Description Task_Handle
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Unsigned32
 Mandatory Range No
 Default Value No

7.2.4 Task

 A task will be identified by its name or identifier. The task types cyclic, event and timertask are
supported.

 Representation of the Values: cyclic = 0x0, event = 0x1, timertask = 0x2

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 26 -

 Task definition structure

 Index Subindex Field in Task_Def Record Data Type
 0082H 0H Number of supported entries Unsigned8
 1H Task_Name Visible String
 2H Task_Identifier Unsigned32
 3H Task_Types Unsigned32
 4H Task_Priority Unsigned32
 5H Time_Intervall Unsigned32

 Detailed object description

 Index 9700H - 97FFH
 Name Task
 Object Code RECORD
 Number of Elements 5
 Data Type Task_Def

 Value description

 Sub-Index 0H
 Description Number of supported entries
 Object class Optional
 Access RO
 PDO Mapping No
 Value Range Unsigned8
 Mandatory Range No
 Default Value No

 Sub-Index 1H
 Description Task_Name
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Visible String
 Mandatory Range No
 Default Value No

 Sub-Index 2H
 Description Task_Identifier
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Unsigned32
 Mandatory Range No
 Default Value No

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 27 -

 Sub-Index 3H
 Description Task_Type
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Unsigned32
 Mandatory Range No
 Default Value No

 Sub-Index 4H
 Description Task_Priority
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Unsigned32
 Mandatory Range No
 Default Value No

 Sub-Index 5H
 Description Time_Interval
 Object class Optional
 Access R (optional W)
 PDO Mapping No
 Value Range Unsigned32
 Mandatory Range No
 Default Value No

7.2.5 Start/Stop (Program/Task)

 see /DSP-302/

7.2.6 Debugging/Monitoring

 see /DSP-302/

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 28 -

8 Appendix (informative)

8.1 Detailed description of network variable segments

 [DynamicChannels]
 NrOfSeg=36
 ; -------- Boolean ---------
 Type1=1
 Dir1=ro
 Range1=0xA080-0xA0BF
 PPOffset1=0, 1
 ; -------- Integer8 ---------
 Type2=2
 Dir2=ro
 Range2=0xA000-0xA03F
 PPOffset2=0
 ; ------- Usigned8--------
 Type3=5
 Dir3=ro
 Range3=0xA040-0xA07F
 PPOffset3=0
 ; ------- Integer16 --------
 Type4=3
 Dir4=ro
 Range4=0xA0C0-0xA0FF
 PPOffset4=0
 ; ------ Unsigned16-------
 Type5=6
 Dir5=ro
 Range5=0xA100-0xA13F
 PPOffset5=0
 ; ------- Integer24 --------
 Type6=0x10
 Dir6=ro
 Range6=0xA140-0xA17F
 PPOffset6=0
 ; ------ Unsigned24-------
 Type7=0x16
 Dir7=ro
 Range7=0xA180-0xA1BF
 PPOffset7=0
 ; ------- Integer32 --------
 Type8=4
 Dir8=ro
 Range8=0xA1C0-0xA1FF
 PPOffset8=0
 ; ------ Unsigned32-------
 Type9=7
 Dir9=ro
 Range9=0xA200-0xA23F
 PPOffset9=0
 ; ------- Integer40 --------
 Type10=0x12
 Dir10=ro
 Range10=0xA2C0-0xA2FF
 PPOffset10=0
 ; ------ Unsigned40-------
 Type11=0x18
 Dir11=ro
 Range11=0xA280-0xA2BF
 PPOffset11=0
 ; ------- Integer48 --------
 Type12=0x13
 Dir12=ro
 Range12=0xA340-0xA37F
 PPOffset12=0

 ;------ Unsigned48------
 Type13=0x19
 Dir13=ro
 Range13=0xA300-0xA33F
 PPOffset13=0
 ;-------- Integer56--------
 Type14=0x14
 Dir14=ro
 Range14=0xA3C0-0xA3FF
 PPOffset14=0
 ;------ Unsigned56------
 Type15=0x1A
 Dir15=ro
 Range15=0xA380-0xA3BF
 PPOffset15=0
 ;-------- Integer64--------
 Type16=0x15
 Dir16=ro
 Range16=0xA400-0xA43F
 PPOffset16=0
 ;------ Unsigned64------
 Type17=0x1B
 Dir17=ro
 Range17=0xA440-0xA47F
 PPOffset17=0
 ;---------- Float ----------
 Type18=8
 Dir18=ro
 Range18=0xA240-0xA27F
 PPOffset18=0

 ;-------- Boolean: --------
 Type19=1
 Dir19=rww
 Range19=0xA500-0xA53F
 PPOffset19=0, 1
 ;---------Integer8---------
 Type20=2
 Dir20=rww
 Range20=0xA480-0xA4BF
 PPOffset20=0
 ;------- Unsigned8 ------
 Type21=5
 Dir21=rww
 Range21=0xA4C0-0xA4FF
 PPOffset21=0
 ;-------- Integer16--------
 Type22=3
 Dir22=rww
 Range22=0xA540-0xA57F
 PPOffset22=0
 ;------ Unsigned16------
 Type23=6
 Dir23=rww
 Range23=0xA580-0xA5BF
 PPOffset23=0
 ;-------- Integer24--------
 Type24=0x0x10
 Dir24=rww
 Range24=0xA5C0-0xA5FF
 PPOffset24=0

 ;------ Unsigned24 ------
 Type25=0x16
 Dir25=rww
 Range25=0xA600-0xA63F
 PPOffset25=0
 ;------- Integer32--------
 Type26=4
 Dir26=rww
 Range26=0xA640-0xA67F
 PPOffset26=0
 ;------ Unsigned32 ------
 Type27=7
 Dir27=rww
 Range27=0xA680-0xA6BF
 PPOffset27=0
 ;------- Integer40--------
 Type28=0x12
 Dir28=rww
 Range28=0xA740-0xA77F
 PPOffset28=0
 ;------ Unsigned40 ------
 Type29=0x18
 Dir29=rww
 Range29=0xA700-0xA73F
 PPOffset29=0
 ;------- Integer48--------
 Type30=0x13
 Dir30=rww
 Range30=0xA7C0-0xA7FF
 PPOffset30=0
 ;------ Unsigned48 ------
 Type31=0x19
 Dir31=rww
 Range31=0xA780-0xA7BF
 PPOffset31=0
 ;------- Integer56--------
 Type32=0x14
 Dir32=rww
 Range32=0xA840-0xA87F
 PPOffset32=0
 ;------ Unsigned56 ------
 Type33=0x1A
 Dir33=rww
 Range33=0xA800xA83F
 PPOffset33=0
 ;------- Integer64--------
 Type34=0x15
 Dir34=rww
 Range34=0xA880-0xA8BF
 PPOffset34=0
 ;------ Unsigned64-------
 Type35=0x1B
 Dir35=rww
 Range35=0xA8C0-0xA8FF
 PPOffset35=0
 ;---------- Float-----------
 Type36=8
 Dir36=rww
 Range36=0xA6C0-0xA6FF
 PPOffset36=0

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 29 -

8.2 IEC 61131-3 object dictionary overview
 The following table shows all objects, affected by these specification.

 Index
(hex)

 Object Name Type Acc. M/O

 0080H DEFSTRUCT Configuration_Name

 0081H DEFSTRUCT Resource_Def

 0082H DEFSTRUCT Task_Def

 1000H VAR Device type Unsigned32 RO M

 9501H RECORD Configuration Configuration_Def RW O

 9600H RECORD 1st Resource Resource_Def RW O

 9601H RECORD 2nd Resource Resource_Def RW O

 :

 96FFH RECORD 255th Resource Resource_Def RW O

 9700H RECORD 1st Task Task_Def RW O

 9701H RECORD 2nd Task Task_Def RW O

 :

 97FFH RECORD 255th Task Task_Def RW O

 9800H VAR Project_Name Visible String RW O

 A000H ARRAY 1st Dynamic Integer8 Integer8 RO O

 :

 A03FH ARRAY 64th Dynamic Integer8 Integer8 RO O

 A040H ARRAY 1st dynamic Unsigned8 Unsigned8 RO O

 :

 A07FH ARRAY 64th Dynamic Unsigned8 Unsigned8 RO O

 A080H ARRAY 1st Dynamic Boolean Boolean RO O

 :

 A0BFH ARRAY 64th Dynamic Boolean Boolean RO O

 A0C0H ARRAY 1st Dynamic Integer16 Integer16 RO O

 :

 A0FF0H ARRAY 64th Dynamic Integer16 Integer16 RO O

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 30 -

 A100H ARRAY 1st Dynamic Unsigned16 Unsigned16 RO O

 :

 A13FH ARRAY 64th Dynamic Unsigned16 Unsigned16 RO O

 :

 :

 A440H ARRAY 1st Dynamic Unsigned64 Unsigned64 RO O

 :

 A47FH ARRAY 64th Dynamic Unsigned64 Unsigned64 RO O

 A480H ARRAY 1st Dynamic Integer8 Integer8 RWW O

 :

 A4BFH ARRAY 64th Dynamic Integer8 Integer8 RWW O

 :

 :

 A8C0H ARRAY 1st Dynamic Unsigned64 Unsigned64 RWW O

 :

 A8FFH ARRAY 64th Dynamic Unsigned64 Unsigned64 RWW O

Table 10: List of object dictionary entries

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 31 -

8.3 Example DCF file
 This is not a complete DCF. Only several specific entries for the DS405 are listed.

[DeviceInfo]
...
DynamicChannelsSupported=3
...
[DynamicChannels] ; optional since DynamicChannelsSupported=3
NrOfSeg=36 ; see application notes
Type1=1
Dir1=ro
Range1=0xA080-0xA0BF
PPOffset1=0,1
...
Type36=8
Dir36=rww
Range36=0xA6C0-0xA6FF
PPOffset36=0
...
[OptionalObjects]
1=0xA000
...
[A000] ; Integer8 RO
SubNumber=3
ParameterName=Integer8_RO_Variables
ObjectType=8

[A000Sub0]
ParameterName=NrOfSupportedObjects
ObjectType=0x7
DataType=0x0005
AccessType=ro
DefaultValue=2
PDOMapping=0

[A000Sub1]
ParameterName=<NameOfProcessVariable1>
ObjectType=0x7
DataType=0x0002
AccessType=ro
DefaultValue=
PDOMapping=1

[A000Sub2]
ParameterName=<NameOfProcessVariable2>
ObjectType=0x7
DataType=0x0002
AccessType=ro
DefaultValue=
PDOMapping=1
...

8.4 Application notes

8.4.1 Network variables

The usage of the dynamic index assignment of the network variables implies, that the object
dictionary area contains arrays with gaps. For example an array may have two sub-objects 1
and 5.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 32 -

8.4.2 Data type representation issues

In chapter 4.2 the internal data type representation is specified to be partially CANopen non-
compliant. If this happens, there may be different data representation of the same data values.

Example:

A PLC may have a byte ordering opposite to CANopen. When transferring a network variable
of data type Unsigned16 with value 1 via a PDO according to 4.2 the process picture will con-
tain the following value:

ID byte 0 byte 1
abc 1 0

byte 0 byte 1
0 1

PDO

Protocol stack

Process image

0001 h = 1dApplication value

0001 h = 1dInterpretation by other
devices according to
CANopen encoding rules

Figure 24: Data representation with PDO on CANopen non-compliant PLCs

When transferring the same value via SDO, there is another situation:

ID protocol byte 0 byte 1
xyz xyz 0 1

byte 0 byte 1
0 1

SDO

Protocol stack

Process image

0001 h = 1dApplication value

0100 h = 256dInterpretation by other
devices according to
CANopen encoding rules

Figure 25: Data representation with SDO on CANopen non-compliant and compliant PLCs

It is the responsibility of the application / user to consider this. The manufacturer of a PLC may
decide to make the byte-re-ordering as an own task upon the protocol stack. This will avoid the
problem, but will need much more system resources.

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 33 -

8.4.3 EDS

The usage of "DynamicChannelsSupported=3" implies not to support all possible CANopen
data types with a device. If the device supports only some of these data types (e.g. BOOL, 1-,
2- and 4 Byte wide types), this can be coded by using the section "DynamicChannels".

It is not allowed to redefine the section "DynamicChannels" of a 405 Profile. Tools are allowed
to presuppose the objects as defined in these specification and it is recommended that tools,
support the 405 Profile, do not interpret data types other than specified. A reason to enter the
section "DynamicChannels" in a EDS/DCF is to support tools without knowledge of the 405
Profile (e.g. DSP-302 Tools) or to give information, what data types are supported or to supply
the information of the implemented size of the segments.

For these reasons it is strongly recommended to include the section “DynamicChannels” in the
EDS.

8.4.4 Tool integration

This mechanism allows all kind of tools to use the Project files. Users can work with program-
ming environments, debugging tools and project planing tools or only simple node specific
configuration tools. Each tool has full access to all information. Further there is no consistency
problem between different files.

 The locking mechanism is available on every disk operating system used in practice.

 Definition of variables may be done in the Programming System. In that case the Network Con-
figuration has to be informed about the name, type and address of these variables, since the
Network Configuration is responsible for setting-up the appropriate communication channels for
transferring the data contents. The other possibility is the generation of variables in the Net-
work Planning System. This is useful on setting-up a network with distributed intelligence,
where the interface between the separate processes has to be defined. In that case a possi-
bility is required to transfer information about the generated variables to the Programming Sys-
tem of each programmable device of that network.

 Chapter 6 specifies the data exchange via DCF according to Figure 26.

IEC 61131
CANopen
Network

Configuration
DCF

Figure 26: Information exchange via DCF

 Some programming systems may not support DCF file formats. In practice it even may be not
possible to extend them. But normally they will provide a possibility of data exchange in any
other file format. For example this may be something like an include file written in IEC 61131-3
syntax itself (such as DTY). For fulfilling the specification in chapter 6 it is possible to use a
converter module as shown in Figure 27.

ConverterIEC 61131
CANopen
Network

Configuration
DCFxyz

Figure 27: Data exchange using converter module

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 34 -

Version 1.0 of DSP-405 defined mechanisms for data exchange via DCF and a file format
called NVX. For compatibilty reasons the usage of NVX can be interpreted in a way, that the
converter is part of the programming system as well as of the Network Configuration System.
This is illustrated in Figure 28.

IEC 61131

DCFxyz

IEC 61131
CANopen
Network

Configuration
DCF

Conv.
Part

CANopen
Network

Configuration

Figure 28: Compatibility for NVX format

To allow the denotation of a device specific tool already by the device manufacturer the EDS
may contain a description, which tools are to be used. On creating a DCF from that EDS, this
tool description will be copied.

The description start with a section [Tools] containing the entry Items with the number of
tools supported. Each tool is described in a section [Toolx] with x as decimal counter
(1..Items). These sections contain the entries Name and Command giving the symbolic name
and the concrete command. Further entries may exist. Manufacturers are responsible to avoid
naming collisions. Command line parameters are not specified here. They depend on the con-
verters.

The example shows a converter

[Tools]
Items=1

[Tool1]
Name=Convert DCF to DTY
Command=DCF2DTY $DCF $NAME.DTY

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 35 -

8.5 IEC 61131-3 sample code
To give a better impression of how the IEC 61131-3 defined items will be used in a typical ap-
plication, here is one (non-normative) sample program:

PROGRAM HeatControl
VAR_EXTERN

(* How to map variables between process image and CANopen will *)
(* be very system dependent, this is just one possible way *)
Temperature: CIA405INT24;
VentilatorSpeed: CIA405UINT48;

END_VAR
VAR_GLOBAL

MaxTemperature: DINT := 21;
Slow : ULINT := 300; (* whatever unit *)
Fast : ULINT := 800; (* same unit *)

END_VAR

LD Temperature
CIA405INT24_TO_DINT
GT MaxTemperature
JMPC cooler

(* seems not to hot, so run ventilator slow *)
LD Slow
ULINT_TO_CIA405UINT48
ST VentilatorSpeed
JMP go_on

cooler:
(* seems to be hot, run ventilator faster *)
LD Fast
ULINT_TO_CIA405UINT48
ST VentilatorSpeed

go_on:
(* rest of program *)

END_PROGRAM

8.6 Implementation models for IEC 61131-3 data type support
Data types CIA405INT24 etc. as mentioned before are not standard with IEC 61131-3. How
these are made available to the user is left to implementation, the following chapter describes
several possible options. All these models are non-normative, serving only for a better under-
standing

8.6.1 Native support

One possible implementation is to integrate support for these data types defined above into
the IEC 61131-3 programming system. No conversions should be necessary then, the new
data types can be integrated into the IEC 61131-3 hierarchy of data types, allowing all built-in
instructions and many overloaded system functions to be used for these data types (ADD, EQ,
MAX, ...).

Problem: Some effort to implement.

8.6.2 Padding to next best match

The new data types may be defined by using the closest matching IEC 61131-3 native type,
e.g. TYPE CIA405INT48: LINT; END_TYPE;

Problem: Memory space is wasted. Value of IEC 61131-3 may exceed limits of CANopen rep-
resentation. Which instance shall handle this and how? Necessary padding bytes might impose
problems on IEC 61131-3 memory mapping (e.g. process image).

CiA DS 405 Interface and Device Profile for IEC 61131-3 Programmable Devices CiA e.V.

- 36 -

8.6.3 Using arrays or struct

The new types may be defined using a array (or structure) of individual bytes:

TYPE CIA405INT48: array[1..6] of BYTE; END_TYPE;

or

TYPE CIA405INT48: STRUCT b1,b2,b3,b4,b5,b6: BYTE; END_TYPE;

Applications using only data types and conversion functions as defined in chapters before can
be truly portable to different systems, no matter which of these three implementation models be
used. Applications using details depending on any of these implementations (applying an ADD
to one of these types, accessing individual elements of this array or relying on out-of-range
behaviour) might not be portable.

